Minimum Latency Training Strategies for Streaming Sequence-to-Sequence ASR

Hirofumi Inaguma^{1,2}, Yashesh Gaur², Liang Lu², Jinyu Li², Yifan Gong² Kyoto Univiersity, Kyoto, Japan¹ Microsoft Speech and Language Group, Redmond, WA, USA²

IEEE ICASSP 2020

Background: End-to-end ASR

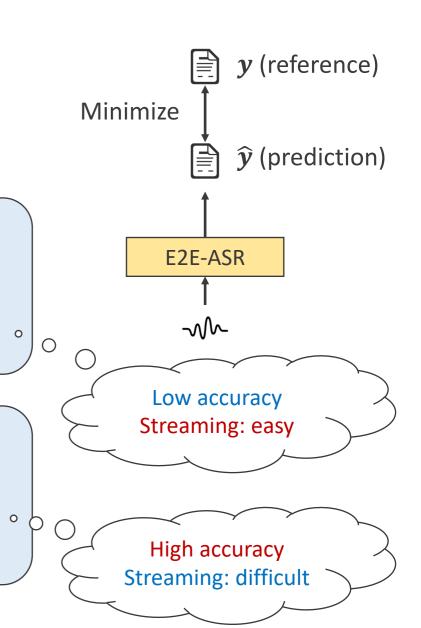
- Input sequence (speech): $\mathbf{x} = (x_1, \dots, x_T)$
- Output sequence (transcription): $\mathbf{y} = (y_1, \dots, y_L)$

Time-synchronous model $(|x| = |\hat{y}|)$

- Connectionist temporal classification (CTC) [Graves et al., 2006]
- RNN-Transducer (RNN-T) [Graves et al., 2013]
- Recurrent neural aligner (RNA) [Sak et al., 2017]

Label-synchronous model $(|x| \neq |\hat{y}|)$

- Attention-based sequence-to-sequence (S2S) [Bahdanau et al., 2016]
- Transformer [Vaswani et al., 2017]



0

Streaming attention-based S2S ASR

Neural Transducer [Jailty et al., 2015]

• Perform attention mechanism for a fixed size of block

Hard monotonic attention [Raffel et al., 2017]

- Learn to detect token boundaries via stochastic binary decision
- Extension: Monotonic chunkwise attention (MoChA) [Chiu et al., 2018]

Triggered attention [Moritz et al., 2018]

Perform global attention over encoder memories trunce

Adaptive computation steps (ACS) [Li et al., 2018]

• Learn how many tokens to generate with encoder outputs

Continuous Integrate-and-Fire (CIF) [Dong et al,, 2019]

• Fine-grained version of ACS

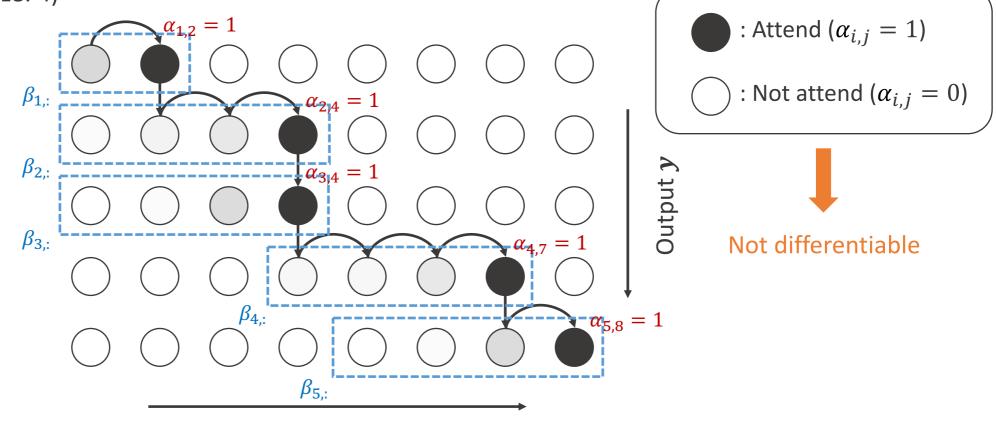
And more...

- Windowing approaches
- Reinforcement learning

Good results
Efficient training

MoChA (test time)

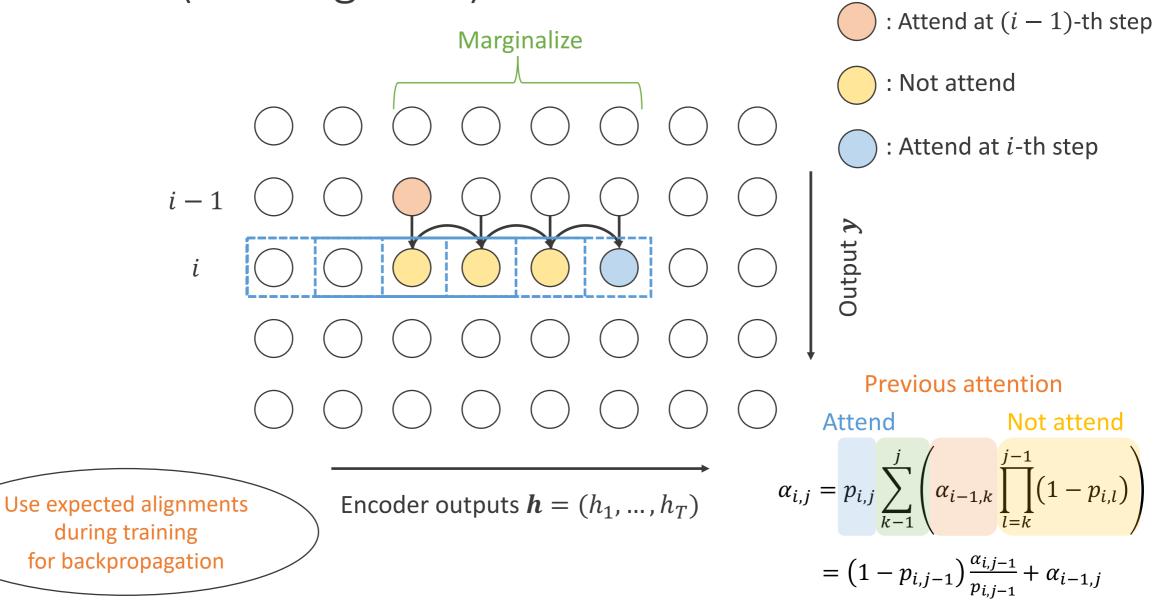
e.g., w = 4 (chunk size: 4)

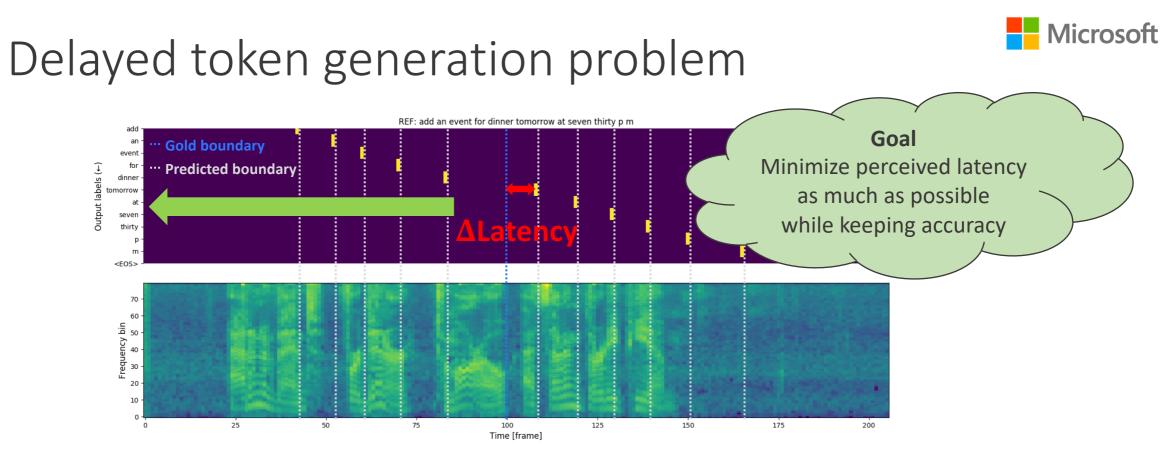


Encoder outputs $\boldsymbol{h} = (h_1, \dots, h_T)$

- **1.** *Monotonic attention*: whether to attend or not
- 2. Chunkwise attention: soft attention over a small window

MoChA (training time)





• Decision boundaries (yellow dots) are delayed from the actual acoustic boundary

- 1. Unidirectional encoder (lacking the future information)
- 2. Sequence-level criterion (utilizing as many future frames as possible to maximize the log-likelihood)
- This leads to increasing user perceived latency

Similar behaviors have been reported in CTC [sak et al., 2015] and RNN-T [Li et al., 2019]

Evaluation metric: latency

 Definition: difference between <u>time-index of a predicted boundary</u> and <u>that of</u> <u>the gold boundary</u>

Corpus-level latency (averaged per token)

$$\Delta_{\text{corpus}} = \frac{1}{\sum_{k=1}^{N} |\mathbf{y}^k|} \sum_{k=1}^{N} \sum_{i=1}^{|\mathbf{y}^k|} (\widehat{b_i^k} - b_i^k)$$

Utterance-level latency (averaged per utterance)

$$\Delta_{\text{utterance}} = \frac{1}{N} \sum_{k=1}^{N} \frac{1}{|\mathbf{y}^k|} \sum_{i=1}^{|\mathbf{y}^k|} (\widehat{b_i^k} - b_i^k)$$

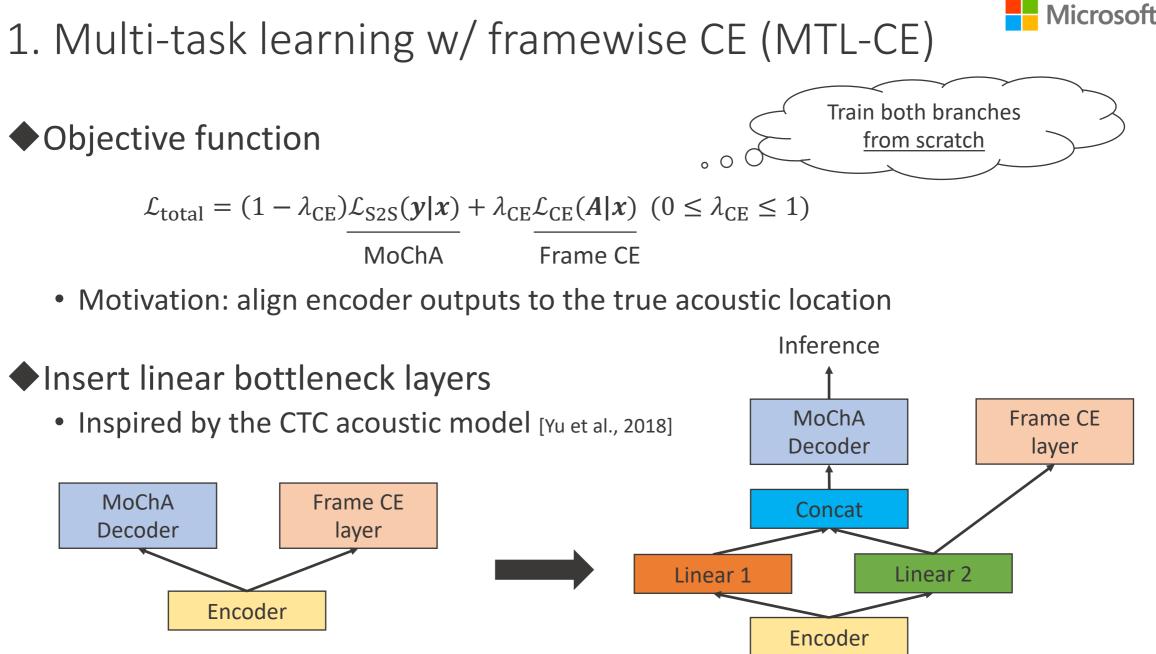
- Report (1) average, (2) median, (3) 90-th, and (4) 99-th percentile
- Teacher-forcing when calculating latency to match the sequence lengths

Proposed methods

Where should we apply alignment information in the model?

Marginalize Leverage hard alignments on the decoder side Output \boldsymbol{y} Expected latency loss \mathcal{L}_{MinLT} S2S CE loss \mathcal{L}_{S2S} Minimum latency training (MinLT) : Attend $(a_{i-1,i})$ MoChA : Not attend Decoder Delay constrained training (DeCoT) : Attend $(a_{i,i})$ Encoder outputs **h** Hard alignments Leverage hard alignments on the encoder side Frame CE Concat layer Multi-task w/ framewise CE (MTL-CE) ٠ Linear 2 Linear 1 Pre-training w/ framewise CE (PT-CE) • The acoustic model in the hybrid system Encoder

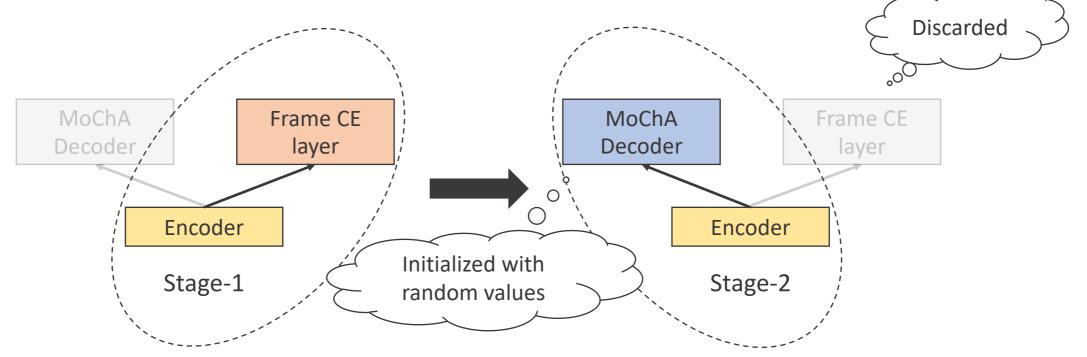
Leveraging hard alignments extracted from the hybrid system



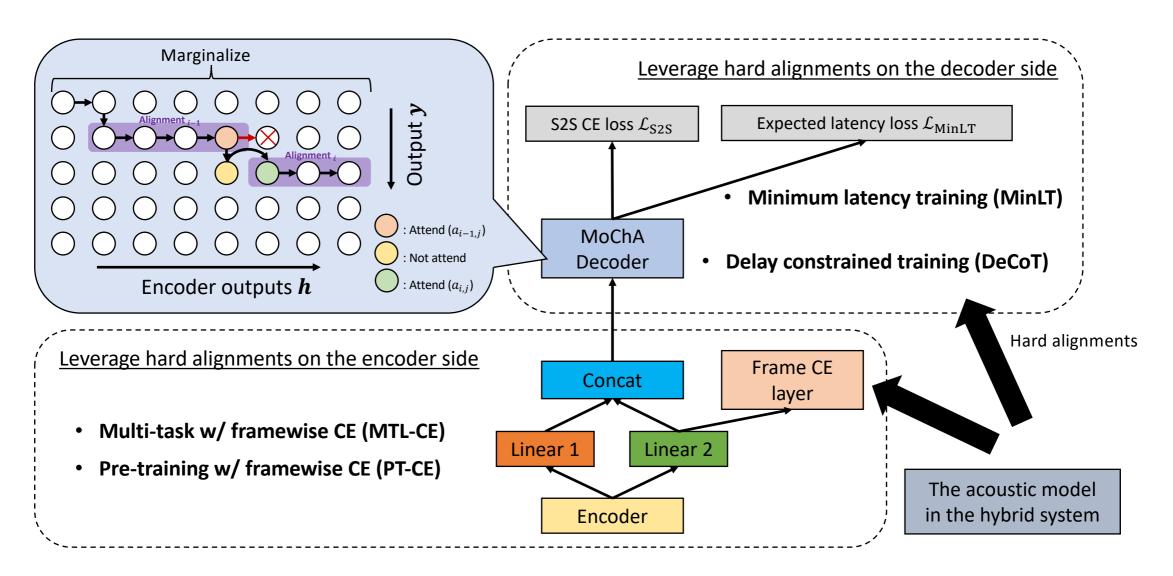
2. Pre-training with framewise CE (PT-CE)

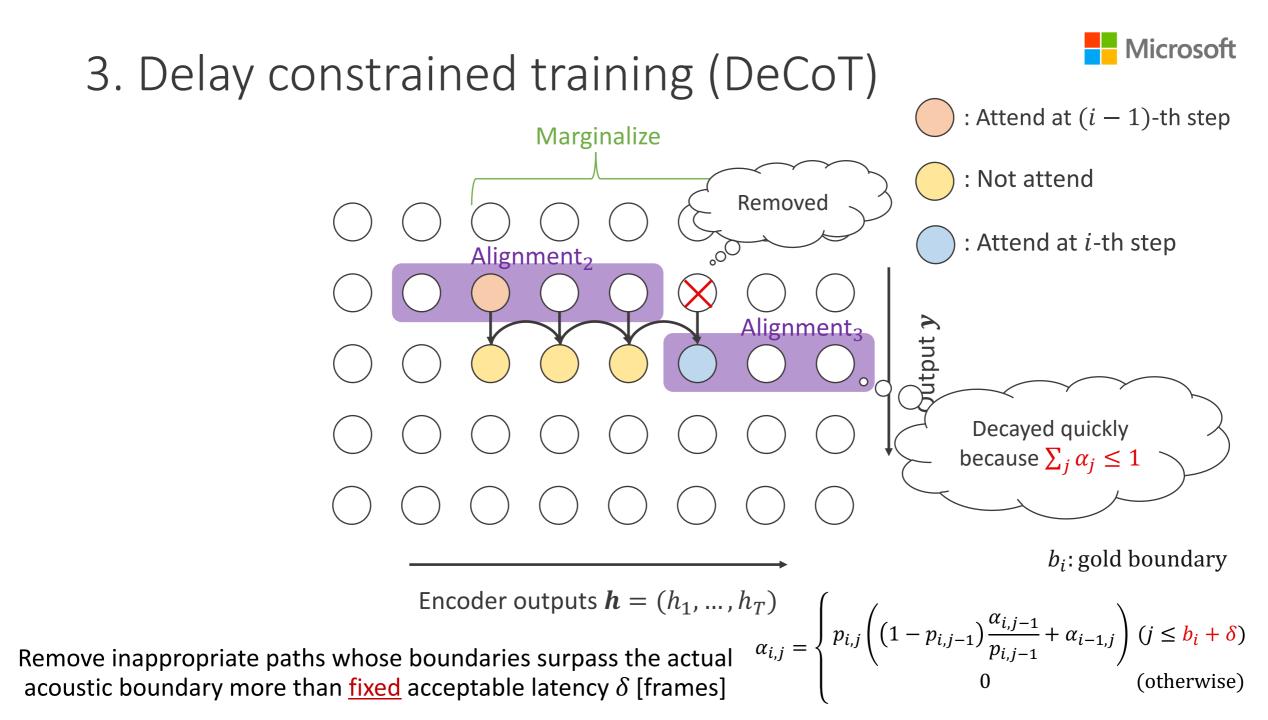
2-staged training

- Motivation
 - Start training from well-aligned encoder representations
 - \succ Do not have to tune the CE weight λ_{CE}
- No linear bottleneck layers



Proposed methods





3. Delay constrained training (DeCoT)

Regularization with quantity loss

- Add a regularization term to keep $\sum_j \alpha_j = 1$
- Originally proposed in CIF [Dong et al., 2019] with a different motivation

L: the number of tokens in the reference

$$\mathcal{L}_{\text{QUA}} = |L - \sum_{i=1}^{L} \sum_{j=1}^{T} \alpha_{i,j}|$$

$$\mathcal{L}_{\text{total}} = \mathcal{L}_{\text{S2S}} + \lambda_{\text{QUA}} \mathcal{L}_{\text{QUA}} \ (\lambda_{\text{QUA}} \ge 0)$$

4. Minimum latency training (MinLT)

Objective function

- Directly minimize the expected latency $\mathcal{L}_{\mathrm{MinLT}}$ by utilizing hard alignments $oldsymbol{A}$

Expected boundary

 $\mathcal{L}_{\text{MinLT}} = \frac{1}{|y|} \sum_{i=1}^{L} |\sum_{j=1}^{I} j\alpha_{i,j} - b_i| \qquad (b_i: \text{refernce boundary for } i\text{-th token})$

$$\mathcal{L}_{total} = \mathcal{L}_{S2S} + \lambda_{MinLT} \mathcal{L}_{MinLT} \ (\lambda_{MinLT} \ge 0)$$

Motivation: reduce latency flexibly

DeCoT assumes the fixed latency for each token

Related work

- Latency loss has been investigated in simultaneous NMT [Arivazhagan et al., 2019]
- Non-silence frames are not distributed uniformly over the input speech in ASR

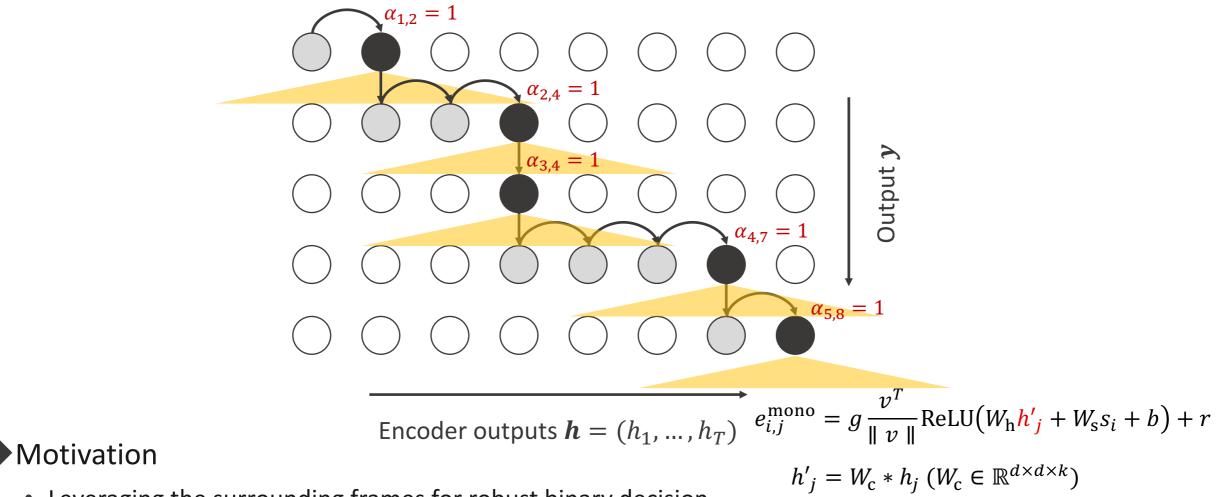
Experimental condition

Data	Train: Cortana voice assistant (3.4k hours) Validation: Sampled disjoint 4k utterances form the training set Test: 5.6k utterances
Feature	80-dim log-mel fbank (3 frame stacked, 30ms per frame)
Output unit	Mixed units (34k vocabulary)
Architecture	Offline: 512-dim (per direction) 6-layer BiGRU encoder Streaming: 1024-dim 6-layer GRU encoder Decoder: 512-dim 2-layer GRU
Optimization	Adam
Decoding	Beam width: 8, no LM

- Word-level alignments: A = (a₁, ..., a_T) ({a_j}_{j=1,...,T}: one-hot vector)
 ➢ Divide duration based on the ratio of the character length of each subword
- Start DeCoT and MinLT from the baseline MoChA (warm start training)

Enhance monotonic attention with 1D convolution

e.g., k = 5 (lookahead: 2, 60ms)



• Leveraging the surrounding frames for robust binary decision

k: kernel size, d: unit size

Results: Baseline

	Model	WER [%]	
Offline	BiGRU global attention	7.01	
	UniGRU global attention	8.44	
	BiGRU MoChA (chunk: 4)	8.09	
Streaming	UniGRU MoChA (chunk:4)	10.37	
	+ 1D-convolution (baseline)	9.93	4.24% WERR

- Huge gaps between (1) bidirectional <-> unidirectional
 (2) offline <-> streaming S2S
- 1D-convolution layer improved the streaming MoChA by **4.24%** relatively

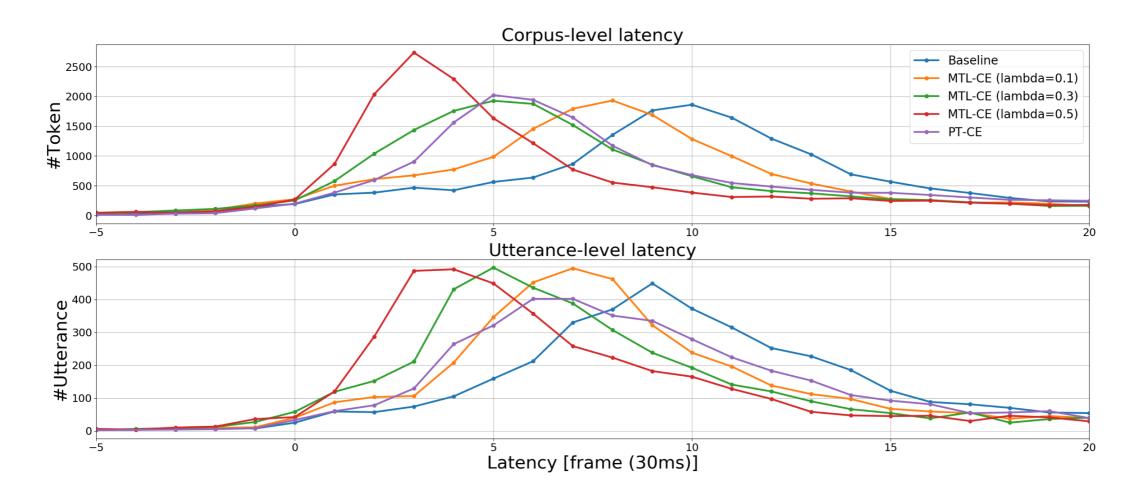
Results: Alignments on the encoder side

Model	WER [%]	Corpus-level [frame (30ms)]			
woder	VVER [70]	Ave.	Med.	90th	99th
Baseline MoChA	9.93 🗖	11.65	10.00	21.39	44.29
MTL-CE ($\lambda_{ ext{CE}}=0.1$)	10.21 5.6	% 9.84	8.00 40%	19.42	46.54
MTL-CE ($\lambda_{ ext{CE}}=0.3$)	10.48 🗲	8.78	6.00 🗸	19.69	47.96
MTL-CE ($\lambda_{\mathrm{CE}}=0.5$)	11.11	8.36	5.00	21.21	49.86
PT-CE	12.74	10.49	7.00	22.90	48.65

- MTL-CE reduced latency in proportion to $\lambda_{\rm CE}$ while degrading WER slightly
- PT-CE also reduced latency but degraded WER too much
- Contrastive results to previous works using CTC + framewise CE objective
 MoChA is a label-synchronous model

Visualization of latency distribution (encoder)

Microsoft



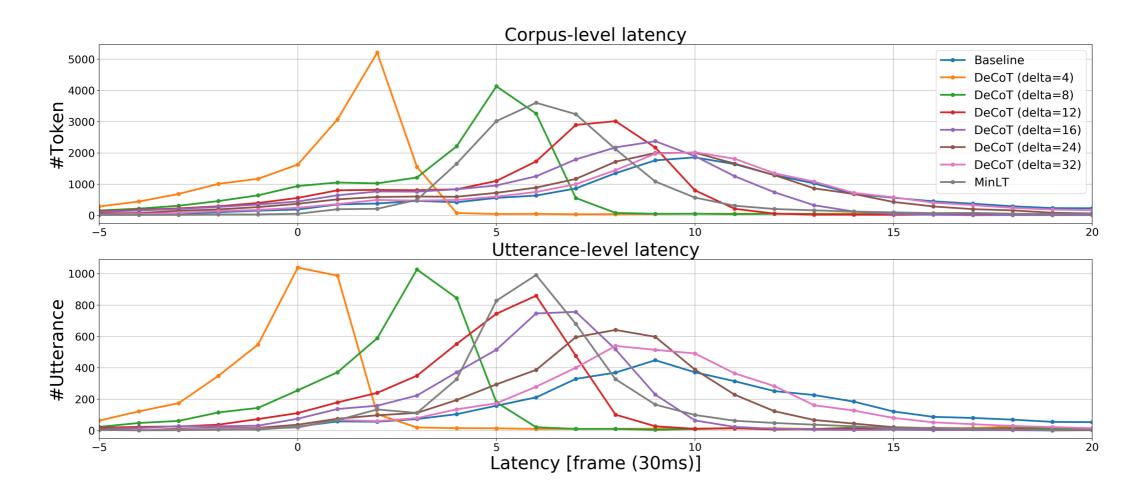
Results: Alignments on the decoder side

Model		Corpus-level [frame (30ms)]			
Model	WER [%]	Ave.	Med.	90th	99th
UniGRU global attention (offline)	8.44	N/A	N/A	N/A	N/A
Baseline MoChA	9.93	11.65	10.00	21.39	44.29
DeCoT ($\delta = 4$)	20.25	3.66	1.00	9.56	62.27
DeCoT ($\delta=8$)	14.35 8.0%	4.60	<mark>20%</mark> 5.00	7.00 62.9%	47.04
DeCoT ($\delta=12$)	11.40	6.02	7.00	9.92	35.58
DeCoT ($\delta = 16$)	9.13 🗸	6.63	8.00	11.71 🗸	16.43
DeCoT ($\delta = 24$)	8.87	8.37	9.00	14.45	21.07
DeCoT ($\delta = 32$)	9.17	9.79	10.00	16.54	27.01
MinLT	9.70	7.06	6.00 🗸	10.63	26.76

- DeCoT: <u>large WER improvement</u> and <u>moderate latency reduction (tail part)</u>
- MinLT: <u>small WER improvement</u> and <u>large latency reduction (median)</u>

Visualization of latency distribution (decoder)

Microsoft



Ablation study: Decoder side

 Combination of DeCoT and MinLT reduced the latency, but degraded WER too much

Model		Corpus-level [frame (30ms)]			
widdei	WER [%]	Ave.	Med.	90th	99th
DeCoT ($\delta = 16$)	9.13	6.63	8.00	11.71	16.43
+ MinLT	12.75	4.05	4.00	7.96	15.92
MinLT	9.70	7.06	6.00	10.63	26.76

Ablation study: Decoder side

 Quantity loss was essential for DeCoT but not necessary for the baseline and MinLT

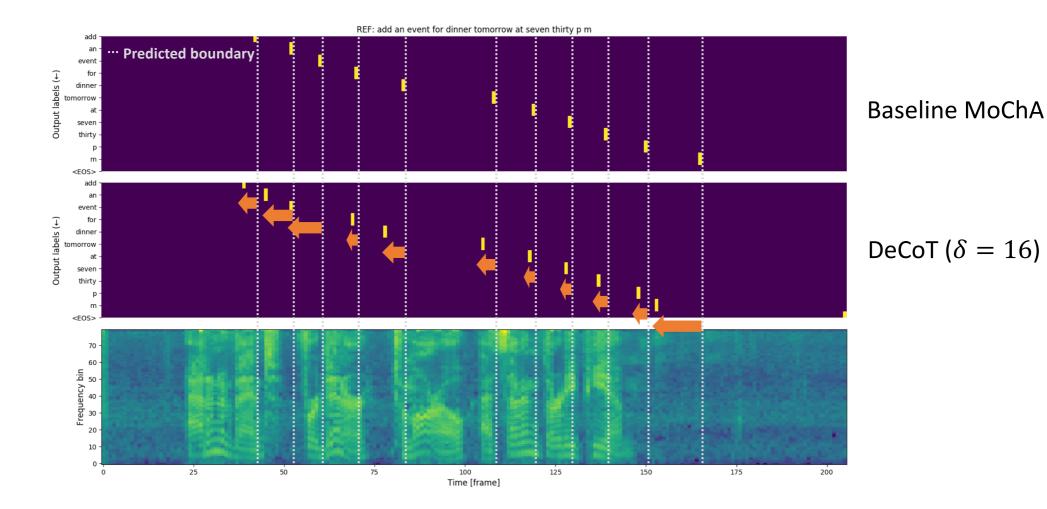
Model	WER [%]	Corpus-level [frame (30ms)]			
WIOGEI		Ave.	Med.	90th	99th
Baseline MoChA	9.93	11.65	10.00	21.39	44.29
+ Quantity loss	10.30	11.24	10.00	20.39	36.01
DeCoT ($\delta=16$)	9.13	6.63	8.00	11.71	16.43
- Quantity loss	14.28	3.93	3.00	7.20	27.39
MinLT	9.70	7.06	6.00	10.63	26.76
+ Quantity loss	13.66	6.82	6.00	10.45	25.57

Ablation study: Decoder side

• Warm start training from the baseline was effective for DeCoT and MinLT

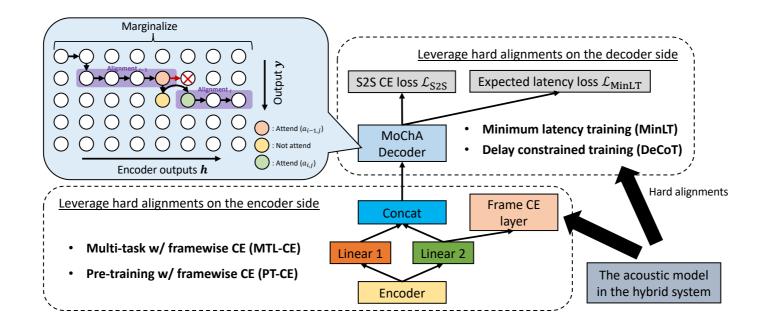
Model	WER [%]	Corpus-level [frame (30ms)]			
widdei		Ave.	Med.	90th	99th
Baseline MoChA	9.93	11.65	10.00	21.39	44.29
+ Warm start training	9.21	12.27	11.00	22.23	43.16
DeCoT ($\delta = 16$)	9.13	6.63	8.00	11.71	16.43
- Warm start training	10.72	6.28	7.00	11.12	36.03
MinLT	9.70	7.06	6.00	10.63	26.76
- Warm start training	13.63	11.83	10.00	21.41	45.06

Alignment visualization



Conclusion

- Explored to leverage frame-level hard alignments extracted from the hybrid system to reduce user perceived latency
- Alignments were effective for latency reduction on both sides, and also improved ASR performance when applying <u>on the decoder side</u>



Question?

E-mail: inaguma [at] sap.ist.i.kyoto-u.ac.jp