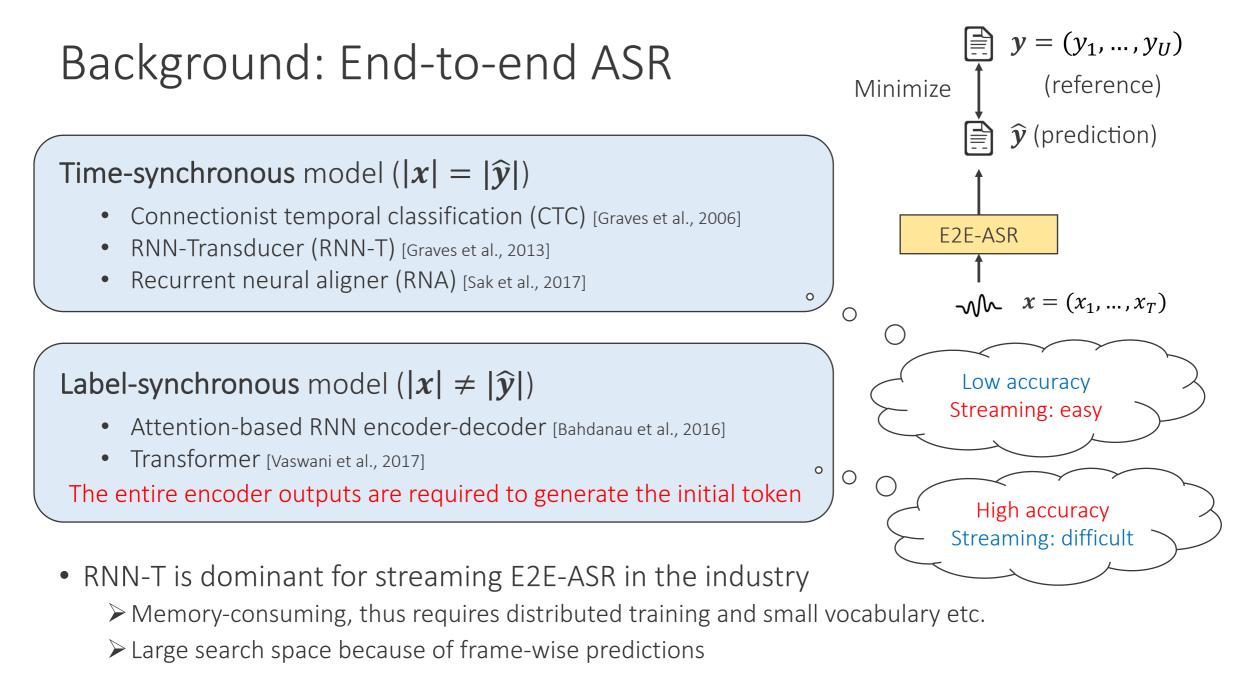
CTC-synchronous Training for Monotonic Attention Model

Hirofumi Inaguma¹ Masato Mimura¹ Tatsuya Kawahara¹ ¹Graduate School of Informatics, Kyoto University, Japan



Streaming attention-based models

Neural Transducer [Jailty et al., 2015]

• Perform attention mechanism for a fixed size of block

Hard monotonic attention [Raffel et al., 2017]

- Learn to detect token boundaries via stochastic binary decision
- Extension: Monotonic chunkwise attention (MoChA) [Chiu et al., 2018]

Triggered attention [Moritz et al., 2018]

• Perform global attention over encoder memories truncated by CTC spikes

Adaptive computation steps (ACS) [Li et al., 2018]

• Learn how many tokens to generate with encoder outputs

Continuous Integrate-and-Fire (CIF) [Dong et al., 2019]

• Fine-grained version of ACS

• Simple

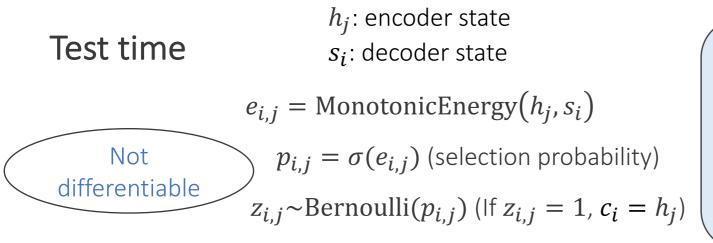
- Good results
- Efficient training
- Linear time decoding

And more...

 \bigcirc

- Windowing approaches
- Incremental decoding
- Reinforcement learning

Hard monotonic attention (HMA) [Raffel+ 2017]



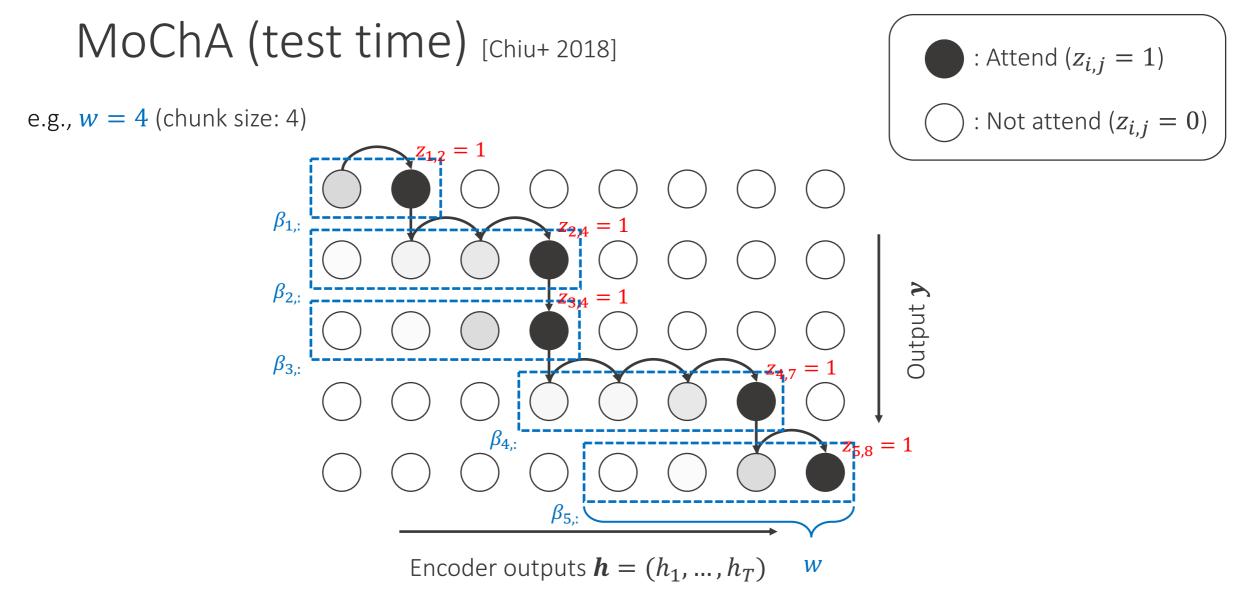
Points

- Linear-time decoding O(T) during inference
- HMA has options to

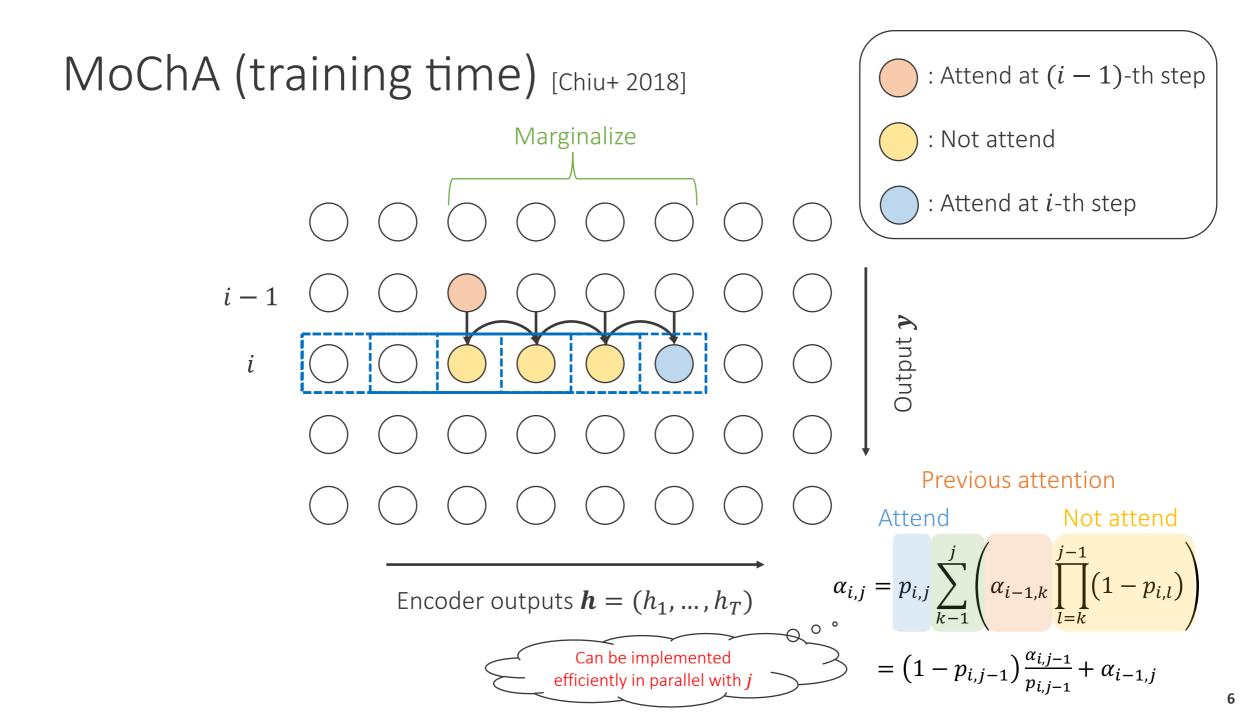
 (1) stop at the current frame j
 (2) move forward to the next frame j + 1

 Introduce a binary decision process z_{i,j} to decide whether to attend to h_i or not

Training time



- 1. Monotonic attention: whether to attend or not
- 2. Chunkwise attention: soft attention over a small window



Optimization problem

Recap

$$\alpha_{i,j} = (1 - p_{i,j-1}) \frac{\alpha_{i,j-1}}{p_{i,j-1}} + \alpha_{i-1,j}$$

$$p_{i,j} = \sigma(e_{i,j})$$

1. $\sum_{j} \alpha_{i,j} = 1$ is not satisfied during training

- $\alpha_{i,j}$ is <u>NOT globally normalized</u> over the whole encoder outputs $\{h_j\}_{j=1,..,T}$
 - $\geq \alpha_{i,j}$ is not a valid probability distribution
 - $\geq \alpha_{i,j}$ attenuates quickly during marginalization
 - \succ Selection probability $p_{i,j}$ is not learnt well
- Enlarge the mismatch between training and test time

2. Alignment errors are propagated to later token generation

- $\alpha_{i,j}$ depends on past alignments
- <u>Backward algorithm cannot be used</u> for $\alpha_{i,j}$
 - $\succ \alpha_{i,j}$ is not a valid probability distribution
 - Autoregressive decoder

• Model needs to learn (1) a proper scale of $\alpha_{i,j}$ and (2) accurate decision boundaries (j s. t. $\alpha_{i,j} = 1$) at the same time

Quantity regularization

• Add a regularization term to encourage $\sum_{j} \alpha_{i,j} = 1$

$$\mathcal{L}_{\text{qua}} = |U - \sum_{i=1}^{U} \sum_{j=1}^{T} \alpha_{i,j}|$$

$$\mathcal{L}_{\text{total}} = (1 - \lambda_{\text{ctc}})\mathcal{L}_{\text{s2s}} + \lambda_{\text{ctc}}\mathcal{L}_{\text{ctc}} + \lambda_{\text{qua}}\mathcal{L}_{\text{qua}} \ (\lambda_{\text{qua}} \ge 0)$$

• Quantity loss is not effective on large-scale data (3.4k hours) [Inaguma+ 2020], but helpful for small and medium size data (<1k hours)

Preliminary: Comparison of boundary positions (CTC vs.MoChA) Predicted boundary Output labels (+ Baseline ____want ____tc ___open ___doors w/ quantity regularization Decision boundaries of MoChA shift to the right side (future) from the corresponding CTC spikes **Dutput labels** __shatd ows __thei __powr __wouk ____we ____to ____doors ____for Proposed CTC assumes conditional independence • Robust to past alignments CTC leverages the backward algorithm as well > CTC is more accurate than MoChA in terms of alignments 200 400 600 800

Time [msec]

Proposed method: CTC-synchronous training (CTC-ST)

- Leverage CTC's posterior spikes as reference boundaries for MoChA
- MoChA is trained to mimic the CTC model to generate the similar decision boundaries
- External alignments from hybrid ASR are not required [Inaguma+ 2020]

Objective function

CTC boundary Expected MoChA boundary

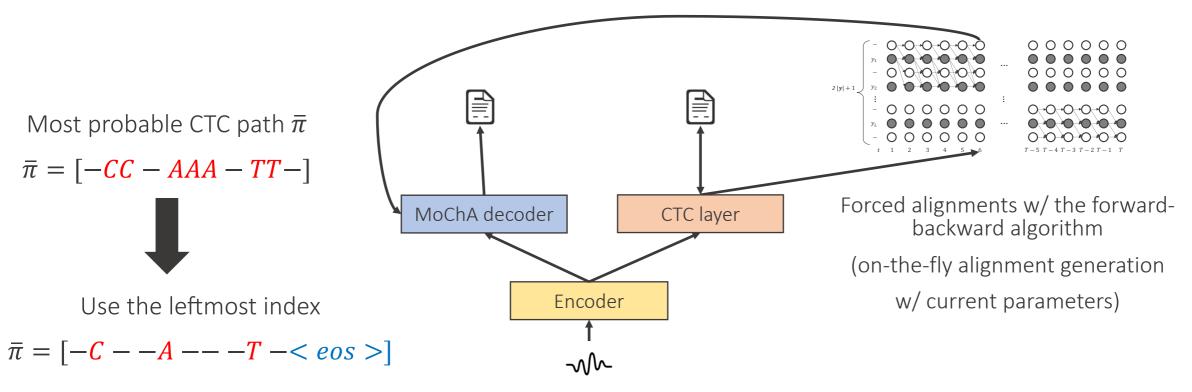
$$\mathcal{L}_{\text{sync}} = \frac{1}{U} \sum_{i=1}^{U} |\mathbf{b}_i^{\text{ctc}} - \sum_{j=1}^{T} j \alpha_{i,j}|$$

 $\mathcal{L}_{total} = (1 - \lambda_{ctc})\mathcal{L}_{mocha} + \lambda_{ctc}\mathcal{L}_{ctc} + \lambda_{qua}\mathcal{L}_{qua} + \lambda_{sync}\mathcal{L}_{sync} \quad (\lambda_{sync} \ge 0)$

• Unless otherwise noted, λ_{qua} is set to 0 when using CTC-ST

Extraction of CTC alignments

- Encoder network is shared between both branches
- Both branches are jointly optimized
- CTC alignments are extracted via forced alignment over the transcription



CTC paths $oldsymbol{\pi}$

Curriculum learning strategy

- Applying CTC-ST from scratch is inefficient because $\sum_{j=1}^{T} \alpha_{ij} \ll 1$ in the early training stage
 - > Difficult to estimate the expected boundary positions $\sum_{j=1}^{T} j \alpha_{i,j}$ accurately
 - ➢ Propose curriculum learning strategy composed of two stages
- Stage-1 (expected to learn a proper scale of α_{ij})
 - Train BLSTM encoder + MoChA with <u>quantity regularization</u> until convergence

Stage-2 (expected to learn boundary location)

- Initialize with model parameters in stage-1
- Train latency-controlled BLSTM (LC-BLSTM) encoder + MoChA with CTC-ST

NOTE: When using the unidirectional LSTM encoder, the same encoder is used in both stages

Combination with SpecAugment

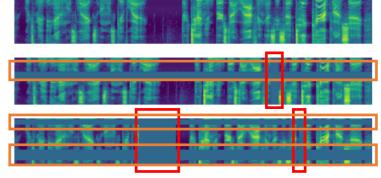
SpecAugment [Park et al., 2019]

- On-the-fly data augmentation method over input log-mel filterbank features
- Zero out successive frames in time and frequency bins

Problem of SpecAugment for MoChA

- Recurrency of $\alpha_{i,j}$ can be easily collapsed after the masked region
- The naïve MoChA did not obtain any gains with SpecAugment
- CTC can estimate boundaries accurately even right after the masked region thanks to the conditional independence assumption per frame
- CTC-ST is expected to improve the effectiveness of SpecAugment for MoChA

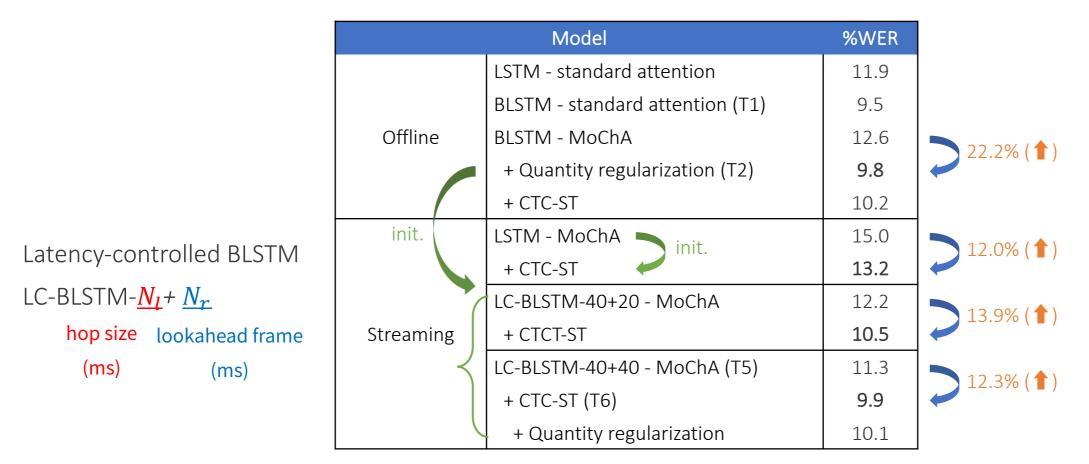
Recap $\alpha_{i,j} = (1 - p_{i,j-1}) \frac{\alpha_{i,j-1}}{p_{i,j-1}} + \alpha_{i-1,j}$



Experimental condition

Corpus	TEDLUM2 (210h, lecture), Librispeech (960h, read)
Feature	80-dim log-mel fbank
Output unit	BPE 10k units
Architecture	Offline: 4-layer CNN -> 512-dim (per direction) 5-layer BLSTM encoder Streaming: 4-layer CNN -> 512-dim 5-layer LC-BLSTM encoder or 4-layer CNN -> 1024-dim 5-layer unidirectional LSTM encoder Decoder: 1024-dim 1-layer LSTM <i>w</i> : 4 (window size for chunkwise attention in MoChA)
Optimization	Adam
Loss weight	$\lambda_{\rm ctc} = 0.3, \lambda_{\rm qua} = 1.0, \lambda_{\rm sync} = 1.0$
Decoding	Beam width: 10, shallow fusion with external 4-layers of LSTM-LM

Main results: TEDLIUM2 (210h)



• Combination of CTC-ST and quantity regularization was not effective

 \succ CTC-ST has a similar effect to improve the scale of α_{ij}

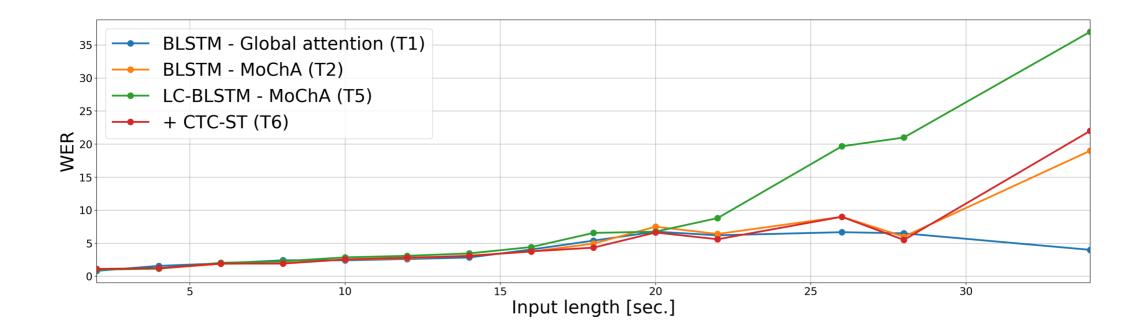
• Curriculum learning was effective

Results with SpecAugment F {

	Frequency	Frequency mask size T Tim		
	Model	F	Т	%WER
Offline	Transformer [Karita et al., 2019]	30	40	8.1
	BLSTM - standard attention [Zeyer et al., 2019]	N/A	N/A	8.8
	BLSTM - standard attention	-	-	9.5
		27	100	8.1
Streaming	LC-BLSTM-40-+40 - MoChA (seed: BLSTM - MoChA)	-	-	11.3
		27	100	12.8
		27	50	11.0
		13	50	11.2
	+ CTC-ST	-	-	9.9
		27	100	9.0
		27	50	8.6
		13	50	9.0

- MoChA did not benefit from SpecAugment w/o CTC-ST
- CTC-ST was robust to the input mask size
- Achieved the comparable performance to the offline model (8.1 vs. 8.6)

WER distributions as a function of sequence length



• CTC-ST improved WER for long utterances

Results on Librispeech (960h)

Model		%WER		
		Test- clean	Test- other	
Offline	BLSTM - standard attention	3.1	9.5	
	+ SpecAugment ($F = 27, T = 100$)	2.8	7.6	
	BLSTM - MoChA	3.6	10.5	8.3/4.7% (1)
	+ Quantity regularization (T2)	3.3	10.0	0.5/4.770 (
	LSTM - MoChA	5.3	14.5	
	+ CTC-ST init.	4.7	13.6	11.3/6.2% (1)
	+ SpecAugment ($F = 13, T = 50$)	4.2	11.2	
init. Streaming	LC-BLSTM-40+40 - MoChA	4.1	11.2	
	+ SpecAugment ($F = 27, T = 100$)	5.0	9.7	
	+ SpecAugment ($F = 13, T = 50$)	4.0	9.5	
	+ CTC-ST	3.9	11.2	
	+ SpecAugment ($F = 27, T = 100$)	3.6	9.2	10.2/18.7% (🕇)
	+ SpecAugment ($F = 27, T = 50$)	3.5	9.1	
	+ SpecAugment ($F = 13, T = 50$)	3.6	9.4	

Comparison with previous works

		%WER	
Model	Test- clean	Test- other	
LSTM - MoChA + MWER [Kim et al,. 2019]	5.6	15.6	
LSTM - MoChA + {BPE, char}-CTC + SpecAugment [Garg et al., 2019]	4.4	15.2	
LSTM - MoChA + CTC-ST (ours)		11.2	
LC-BLSTM - sMoChA [Miao et al, 2019]	6.0	16.7	
LC-BLSTM - MTA [Miao et al., 2020]	4.2	12.3	
LC-BLSTM - MoChA + CTC-ST (ours)		11.2	
+ SpecAugment		9.1	

Conclusion

- Improving optimization of MoChA with CTC-synchronous training
- Leveraged CTC alignments as an effective guide for MoChA to correct error propagation from past decision boundaries
- CTC-ST significantly improved recognition performances especially for long utterances
- CTC-ST can bring out the full potential of SpecAugment for MoChA
- Explicit interaction between CTC and MoChA <u>on the decoder side</u>
 Joint CTC/Attention is performed on the encoder side