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Transformer ASR

P (¥]x)
| Soﬂ;nax ]
* Effcient long-span sequence modeling [vaswani+ 2017) [ un:ear )
» Self-attention Feed Fi)rward
» Multi-head attention P (1) .MI;/IA ) | xD
>Outperform RNN counterparts [Karita+ 2019]  ——te—y [ Multi-Head SAN ]
1 1D-Convolution

Linear 1

3 Token embedding
| FeedForward | !
X E Previous tokens

A
| Multi-Head SAN ]
A

. QK"
Attention(Q, K,V ) = softmax \/d_ |4
k

O = [heady; ...; heady|W, Input speech

Joint training with CTC |0sS [Karita 2019+]

| 2D—:CNN ]

Liotal = (1 — Actc) Lat ([x) + ActcLete (0 < Age < 1)



Streaming Transformer ASR

Frame-synchronous decoding
e Connectionist temporal classification (CTC) [Grave+ 2006, Salazar+ 2019]

o RNN-Transducer/Transformer-Transducer [Grave+ 2013, Yeh+ 2019, Zhang+ 2020]
» Successful in industry
» Large search space because of frame-wise predictions

Label synchronous decoding
* Triggered attention [Moritz+ 2020] } Single input-output alignment
* Continuous Inteqrate-and-fire (CIF) [Dong+ 2020] (segment audio on the encoder side)

* Monotonic chunkwise attention (MoChA) [Chiu+ 2018]

» Extended to monotonic multihead attention (MMA) in simultaneous MT [Ma+ 2020] and
streaming ASR [Miao+ 2020, Tsunoo+ 2020]

» Multiple input-output alignments based linguistic contexts captured in the decoder



Monotonic multihead attention (MMA) ma+ 2020

Extend RNN to Transformer
» Replace every head in cross-attention with a monotonic attention (MA) head

Relationship with previous studies based on MMA
* Miao et al. and Tsunoo et al. also MoChA components in Transformer ASR
* However, they rely on the whole past encoder frames as context
»Not appropriate for linear-time decoding with HMA
» We stick to restricted input context

Background
1. Hard monotonic attention (HMA) [Raffel+ 2017]
2. Monotonic chunkwise attention (MoChA) [Chiu+ 2018]
3. Monotonic multihead attention (MIMA) [Ma+ 2020]



Hard monotonic attention (HMA) raffer+ 20171
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Encoder outputs h = (hq, ..., hy)

1. Monotonic attention: whether to attend or not

2. Chunkwise attention: soft attention over a small window
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Monotonic multihead attention (MMA) va+ 2020

* Each MA head can scan encoder frames with different pace

* z; j isindependent each other in the same layer

Monotonic multihead attention (Hp,, heads)
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Problem specification

Agreement in boundary detection

* The next token cannot be generated until all MA heads detect token
boundaries

* |f some heads do not learn proper monotonic alignments, they continue to
scan memories until the last encoder frame

e Accordingly, the next token generation is delayed
»Not suitable for streaming scenario

Goal

* Train MMA so that every MA head can detect boundaries around the
corresponding acoustic boundaries



First token cannot be generated until the bottom
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Alignment: MMA w/ proposed enhancement

All MA heads learn proper alignments
Upper layer
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Proposed methods: Overview

1. HeadDrop regularization

e Stochastically mask out some MA heads during training to encourage the rest MA heads to
learn alignments

2. Head pruning in lower decoder layers

* MA heads in lower decoder layers do not learn clear alignments

 Remove HMA functions in the lower layers 1)
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1. HeadDrop regularization

 Stochastically mask all elements in each MA head with a probability ppq during
training

* Expect to encourage other unmasked heads to learn proper alignments
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2. Head pruning in lower decoder layers

* Even w/ HeadDrop, some MA heads in lower layers did not learn proper

alignments

» Cross-attention in lower layers are not responsible for learning diagonal alignments

 Remove the MMA function (i.e., cross-attention) in the

bottom Dy, decoder layers (1 < Dy, < D)
» Bottom Dy, decoder layers have language model structure

* Total number of MA heads: D * Hyy = (D — Dyy) * Hypa

» Speed up Inference

Pmma(ylx)
A

Softmax

A

Linear

A

(

Feed Forward

~N

2

MMA
A

Multi-Head SAN

X (D - Dlm)

Feed Forward

<
S

2

Multi-Head SAN

1D-Convolution

L)

Token embedding
1

Previous tokens

14



3. Chunkwise multihead attention

Extend the idea of MoChA to the multi-head version to extract useful
representations with multiple views from every token boundary

Each MA head has H., (= 1) chunkwise attention (CA) head

Total number of CA heads in a layer: Hyqy = Hypa - Hea

Share parameters of CA heads among MA heads

in the same layer was effective
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4. Head-synchronous beam search decoding

Slowest head
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Encoder outputs h = (hq, ..., hy)

* Force non-activated MA heads to activate after a small delay €4t [frame]

e Latency between fastest and slowest MA heads in the same layer is equal to or less
than €yait

e At least one MA head must be activated at every layer



Experimental setting

Corpus
Feature

Output unit

Architecture

Regularization

Optimization
Loss weight

Decoding

Librispeech (960h), TEDLUM?2, AISHELL-1

80-dim log-mel fhank

BPE 10k units

Encoder: 6-layer CNN (1/8 downsampling) -> 12-layer Transformer

Decoder: 6-layer Transformer

Phd = 0.5

Adam + Noam schedule

ACtC = 03

Beam width: 10 (no CTC score), shallow fusion w/ 4-layers of LSTM-LM
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Evaluation metric for boundary detection

1. Boundary coverage (How well each MA head learns monotonic alignments)
The ratio of detected boundaries in the best hypothesis to the number of hypothesis length

L& g R i ||
_ [ Kk
Rcov[%] - Nz |ym1] X100 ln Htotal 7 7 7 al’]
n=1 h=1 i'=1j=1

2. Streamability (How often the model satisfies the streamable condition)

The ratio of utterances satisfying the streamiable condition over all candidates in the beam
until the best candidate is completely generated

Definition: Streamable condition
* All MA heads in the decoder detect the corresponding token
boundaries before reaching the last encoder frame

6 :[ 1 (Q;n’kzlj"] el < Vglyn,ll,lskVSlﬂ‘{ll)
n

0 (otherwise)

18



Offline results: HeadDrop, head pruning

* HeadDrop improved WER

* Pruning MA heads in lower layers improved coverage and streamability

dev-clean/dev-other

HeadDrop %WER HOUIEEIRY Streamability
coverage
Al 0 24 8.6/16.5 67.40 0.0
A2 1 20 7.3/16.3 79.02 0.0
A3 2 4 16 - 4.7/12.6 86.07 0.0
Ad 3 12 45/12.8 83.87 0.0
A5 4 8 3.6/10.8 93.80 0.9
B1 0 24 3.7/11.4 60.59 0.0
B2 1 20 40/11.9 73.73 0.0
B3 2 4 16 v 3.9/10.8 98.85 3.7
B4 3 12 4.1/11.0 99.36 6.4
B5 4 8 41/11.3 99.50 15.8
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Offline results: Head-synchronous decoding

* Head-synchronous beam search decoding improved WER and streamability

dev-clean/dev-other

22322;2’ Streamability
B3 2 3.9(-0.1) /10.7 (-0.1) 99.74 (+0.89) 21.6 (+17.9)
B4 3 4 4 1 3.9(-0.2)/10.6 (-0.4) 99.76 (+0.40) 25.1 (+18.7)
B5 4 3.8(-0.3) /11.1 (-0.2) 99.84 (+0.34) 40.5 (+24.7)

w/ head-sync (improvement from w/o head sync)
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Offline results: Chunkwise multihead attention

Increasing window size w in chunkwise attention was effective (B* vs. D*)

Multiple chunkwise attention heads improved WER and streamability (D* vs. E*)

dev-clean/dev-other

22322;2’ Streamability
B3 2 3.9 /10.7 99.74 21.6
B4 3 4 4 1 3.9 /10.6 99.76 25.1
B5 4 3.8 /111 99.84 40.5
D1 2 3.3/9.9 99.78 37.4
D2 3 4 16 1 3.7/10.8 99.83 36.5
D3 4 3.5/10.4 99.93 60.4
El 2 3.3/10.2 99.78 40.6
E2 3 2 3.6/10.3 99.87 51.2
E3 4 . r 3.5/10.7 99.92 50.0
E4 2 3.3/9.8 99.91 77.9
ES 3 4 3.4/9.9 99.90 84.5
E6 4 3.6/10.4 99.92 63.2

21



Offline results: Head number, head place

e Reducing the total number of MA heads was not a solution (vs. C*, F1)

* Placing multiple MA heads in upper layers is important

dev-clean/dev-other

H Head-sync
- S E]R) Streamability
coverage
C1 1 6 49/11.7 99.38 15.7
C2 0 1 6 4 1 - 3.7/104 99.86 35.9
C3 2 12 3.5/10.7 72.08 0.0
D1 2 20 3.3/99 99.78 37.4
D2 3 4 16 16 1 v 3.7/10.8 99.83 36.5
D3 4 12 3.5/104 99.93 60.4
El 2 20 3.3/10.2 99.78 40.6
E2 3 16 2 3.6/10.3 99.87 51.2
E3 4 . 12 6 v 3.5/10.7 99.92 50.0 The rest 15.5% was able to continue
E4 2 20 33/9.8 99.91 /7.9 streaming decoding until 76.9% of
ES 3 16 4 3.4/9.9 99.90 [ 84.5 _
input frames on overage
E6 4 12 3.6/104 99.92 63.2
F1 0 1 6 16 4 - 3.5/10.5 96.23 40.6
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Streaming results

WER [%] CER [%]
Librispeech
TEDLIUM 2 AISHELL-1
test-clean test-other

Transformer 33 9.1 10.1 6.4

+ data augmentation 2.8 7.0 - -

++ large 2.5 6.1 - -
MMA (E5) 3.4 9.9 10.5 6.5

Offline ) ) .

Triggered attention [Moritz+ 2020] 2.8 7.2
CIF [Dong+ 2020] 33 9.7

MoChA [Inaguma+ 2020] 4.0 9.5 11.3

MMA [Tsunoo+ 2020] 9.7
MMA (narrow chunk) 35 11.1 11.0 7.5

. MMA (wide chunk) 33 10.5 10.2 6.6
Streaming
+ data augmentation 3.0 8.5 - -
++ large 2.7 7.1 - -

 Streaming encoder: chunk-hopping mechanism (N; / N. / N,.)

* narrow: 960ms/640ms/320ms
e wide: 640ms/1280ms/640ms

e Data augmentation: speed perturbation + SpecAugment
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Conclusion

Observation
e Cross-attention heads in the lower decoder layers do no learn clear alignments

Proposals

* Four methods to stabilize the streaming inference with MMA-based
Transformer ASR

e (1) HeadDrop, (2) head pruning, (3) chunkiwe multihead attention, (4) head-
synchronous beam search decoding

Future work

* Reduce perceived latency caused by delayed token generation similar to RNN-
based methods [inaguma+ 2020]

* Analyze what lower decoder layers in Transformer ASR learn
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