Enhancing Monotonic Multihead Attention for Streaming ASR

Hirofumi Inaguma¹ Masato Mimura¹ Tatsuya Kawahara¹ ¹Graduate School of Informatics, Kyoto University, Japan

Transformer ASR

- Effcient long-span sequence modeling [Vaswani+ 2017]
 - ► Self-attention
 - ≻Multi-head attention
 - ► Outperform RNN counterparts [Karita+ 2019]

Attention(Q, K, V) = softmax
$$\left(\frac{QK^{T}}{\sqrt{d_{k}}}\right)V$$

 $O = [head_{1}; ...; head_{H}]W_{o}$

Joint training with CTC loss [Karita 2019+]

 $\mathcal{L}_{\text{total}} = (1 - \lambda_{\text{ctc}})\mathcal{L}_{\text{att}}(y|x) + \lambda_{\text{ctc}}\mathcal{L}_{\text{ctc}} \ (0 \le \lambda_{\text{ctc}} \le 1)$

Streaming Transformer ASR

Frame-synchronous decoding

- Connectionist temporal classification (CTC) [Grave+ 2006, Salazar+ 2019]
- RNN-Transducer/Transformer-Transducer [Grave+ 2013, Yeh+ 2019, Zhang+ 2020]
 - ➢ Successful in industry
 - ➤ Large search space because of frame-wise predictions

Label synchronous decoding

- Triggered attention [Moritz+ 2020]
 Single input-output alignment
- Continuous Integrate-and-fire (CIF) [Dong+ 2020]
- Monotonic chunkwise attention (MoChA) [Chiu+ 2018]
 - Extended to monotonic multihead attention (MMA) in simultaneous MT [Ma+ 2020] and streaming ASR [Miao+ 2020, Tsunoo+ 2020]
 - > Multiple input-output alignments based linguistic contexts captured in the decoder

(segment audio on the encoder side)

Monotonic multihead attention (MMA) [Ma+ 2020]

Extend RNN to Transformer

• Replace every head in cross-attention with a monotonic attention (MA) head

Relationship with previous studies based on MMA

- Miao et al. and Tsunoo et al. also MoChA components in Transformer ASR
- However, they rely on the whole past encoder frames as context
 - ► Not appropriate for linear-time decoding with HMA
 - We stick to restricted input context

Background

- 1. Hard monotonic attention (HMA) [Raffel+ 2017]
- 2. Monotonic chunkwise attention (MoChA) [Chiu+ 2018]
- 3. Monotonic multihead attention (MMA) [Ma+ 2020]

Hard monotonic attention (HMA) [Raffel+ 2017]

Points

- Linear-time decoding O(T) during inference
- HMA has option to

 stop at the current frame
 move forward to the next frame

 Introduce a binary decision process z_{i,j} to decide whether to attend to h_i or not

Training time

$$\alpha_{i,j} = p_{i,j} \sum_{k=1}^{j} \left(\alpha_{i-1,k} \prod_{l=k}^{j-1} (1-p_{i,l}) \right) \qquad p_{i,j} = \sigma(e_{i,j} + \varepsilon), \ \varepsilon \sim \mathcal{N}(0,1)$$
$$= (1-p_{i,j-1}) \frac{\alpha_{i,j-1}}{p_{i,j-1}} + \alpha_{i-1,j} \qquad Calculate expected alignments \alpha_{i,j}$$

- 1. Monotonic attention: whether to attend or not
- 2. Chunkwise attention: soft attention over a small window

Monotonic multihead attention (MMA) [Ma+ 2020]

- Each MA head can scan encoder frames with different pace
- $z_{i,j}$ is independent each other in the same layer

MonotonicEnergy
$$(s_i, h_j) = \frac{W_s s_i (W_h h_j)^T}{\sqrt{d_k}} + \frac{W_k s_i (W_h h_j)^T}{\sqrt{d_k}}$$

 s_i : decoder state at the l-th layer

Problem specification

Agreement in boundary detection

- The next token cannot be generated until all MA heads detect token boundaries
- If some heads do not learn proper monotonic alignments, they continue to scan memories until the last encoder frame
- Accordingly, the next token generation is delayed
 - ➢Not suitable for streaming scenario

Goal

• Train MMA so that every MA head can detect boundaries around the corresponding acoustic boundaries

Alignment: Baseline MMA

First token cannot be generated until the bottom decoder layers detect the boundaries

Alignment: MMA w/ proposed enhancement

All MA heads learn proper alignments

Upper layer

Proposed methods: Overview

- 1. HeadDrop regularization
 - Stochastically mask out some MA heads during training to encourage the rest MA heads to learn alignments
- 2. Head pruning in lower decoder layers
 - MA heads in lower decoder layers do not learn clear alignments
 - Remove HMA functions in the lower layers
- 3. Chunkwise multihead attention
 - Perform multiple chunkwise attention (CA) on top of every single MA head
- 4. Head-synchronous beam search decoding
 - Force non-activated MA heads to activate to improve consensus among MA heads

1. HeadDrop regularization

- Stochastically mask all elements in each MA head with a probability $p_{\rm hd}$ during training
- Expect to encourage other unmasked heads to learn proper alignments

 $m_h \sim \text{Bernoulli}(p_{\text{hd}})$

$$\hat{\alpha}_{:,j}^{h} = \begin{cases} 0 \quad (\text{mask}, m_{h} = 1) \\ \frac{H_{\text{ma}}}{H_{\text{ma}}^{+}} \cdot \alpha_{:,j}^{h} \text{ (otherwise, } m_{h} = 0) \\ 0 = [\hat{A}_{1}V_{1}; ...; \hat{A}_{H}V_{H}]W_{0} \end{cases}$$

Normalize to keep the scale of outputs $(H_{\text{ma}}^+: \text{number of non-masked MA heads})$

2. Head pruning in lower decoder layers

• Even w/ HeadDrop, some MA heads in lower layers did not learn proper alignments

> Cross-attention in lower layers are not responsible for learning diagonal alignments

- Remove the MMA function (i.e., cross-attention) in the bottom D_{lm} decoder layers (1 ≤ D_{lm} ≤ D)
 ➢ Bottom D_{lm} decoder layers have language model structure
- Total number of MA heads: $D \cdot H_{ma} \rightarrow (D D_{lm}) \cdot H_{ma}$ > Speed up Inference

3. Chunkwise multihead attention

- Extend the idea of MoChA to the multi-head version to extract useful representations with multiple views from every token boundary
- Each MA head has H_{ca} (≥ 1) chunkwise attention (CA) head
- Total number of CA heads in a layer: $H_{\rm ma} \rightarrow H_{\rm ma} \cdot H_{\rm ca}$
- Share parameters of CA heads among MA heads in the same layer was effective

4. Head-synchronous beam search decoding

Encoder outputs $\boldsymbol{h}=(h_1,\ldots,h_T)$

- Force non-activated MA heads to activate after a small delay $\epsilon_{ ext{wait}}$ [frame]
- Latency between fastest and slowest MA heads in the same layer is equal to or less than $\epsilon_{\rm wait}$
- At least one MA head must be activated at every layer

Experimental setting

Corpus	Librispeech (960h), TEDLUM2, AISHELL-1						
Feature	80-dim log-mel fbank						
Output unit	BPE 10k units						
A 1.1.	Encoder: 6-layer CNN (1/8 downsampling) -> 12-layer Transformer						
Architecture	Decoder: 6-layer Transformer						
Regularization	$p_{\rm hd} = 0.5$						
Optimization	Adam + Noam schedule						
Loss weight	$\lambda_{\rm ctc} = 0.3$						
Decoding	Beam width: 10 (no CTC score), shallow fusion w/ 4-layers of LSTM-LM						

Evaluation metric for boundary detection

- 1. Boundary coverage (How well each MA head learns monotonic alignments)
 - The ratio of detected boundaries in the best hypothesis to the number of hypothesis length

$$R_{\text{cov}}[\%] = \frac{1}{N} \sum_{n=1}^{N} \frac{Q_i^{n,1}}{|\tilde{y}^{n,1}|} \times 100 \qquad Q_i^{n,k} = \frac{1}{H_{\text{ma}}^{\text{total}}} \sum_{h=1}^{H_{\text{ma}}^{\text{total}}} \sum_{i'=1}^{i} \sum_{j=1}^{|h|} \alpha_{i',j}^{h}$$

- 2. Streamability (How often the model satisfies the streamable condition)
 - The ratio of utterances satisfying the streamiable condition over all candidates in the beam until the best candidate is completely generated

$$R_{\text{str}}[\%] = \frac{1}{N} \sum_{n=1}^{N} \delta_n \times 100$$

$$\int \text{Definition: Streamable condition}$$

$$\int \text{All MA heads in the decoder detect the corresponding toke boundaries before reaching the last encoder frame}$$

$$\delta_n = \begin{cases} 1 & (Q_i^{n,k} = |\tilde{y}^{n,k}|, 1 \le i^{\forall} \le |\tilde{y}^{n,1}|, 1 \le k^{\forall} \le |\Omega_i^n|) \\ 0 & (otherwise) \end{cases}$$

Offline results: HeadDrop, head pruning

- HeadDrop improved WER
- Pruning MA heads in lower layers improved coverage and streamability

		H _{ma}		HeadDrop	dev-clean/dev-other			
ID	D _{lm}		$H_{ m ma}^{ m total}$		%WER	Boundary coverage	Streamability	
A1	0		24		8.6/16.5	67.40	0.0	
A2	1		20		7.3 / 16.3	79.02	0.0	
A3	2	4	16	-	4.7 / 12.6	86.07	0.0	
A4	3		12		4.5 / 12.8	83.87	0.0	
A5	4		8		3.6 / 10.8	93.80	0.9	
B1	0		24		3.7 / 11.4	60.59	0.0	
B2	1		20		4.0/11.9	73.73	0.0	
B3	2	4	16	\checkmark	3.9 / 10.8	98.85	3.7	
B4	3		12		4.1/11.0	99.36	6.4	
B5	4		8		4.1/11.3	99.50	15.8	

Offline results: Head-synchronous decoding

• Head-synchronous beam search decoding improved WER and streamability

ID	D _{lm}	H _{ma}	W	H _{ca}	%WER	Boundary coverage	Streamability	
B3	2				3.9 (-0.1) / 10.7 (-0.1)	99.74 (+0.89)	21.6 (+17.9)	
B4	3	4	4	1	3.9 (-0.2) / 10.6 (-0.4)	99.76 (+0.40)	25.1 (+18.7)	
B5	4				3.8 (-0.3) / 11.1 (-0.2)	99.84 (+0.34)	40.5 (+24.7)	

w/ head-sync (improvement from w/o head sync)

Offline results: Chunkwise multihead attention

- Increasing window size w in chunkwise attention was effective (B* vs. D*)
- Multiple chunkwise attention heads improved WER and streamability (D* vs. E*)

			H _{ma}	W	H _{ca}	dev-clean/dev-other			
ID	D	D _{lm}				%WER	Boundary coverage	Streamability	
E	33	2				3.9 / 10.7	99.74	21.6	
E	34	3	4	4	1	3.9 / 10.6	99.76	25.1	
E	35	4				3.8 /11.1	99.84	40.5	
D	D1	2				3.3 / 9.9	99.78	37.4	
C	02	3	4	16	1	3.7 / 10.8	99.83	36.5	
D)3	4				3.5 / 10.4	99.93	60.4	
E	E1	2				3.3 / 10.2	99.78	40.6	
E	2	3			2	3.6 / 10.3	99.87	51.2	
E	3	4	Л	16		3.5 / 10.7	99.92	50.0	
E	Ξ4	2	4	10		3.3 / 9.8	99.91	77.9	
E	E5	3			4	3.4 / 9.9	99.90	84.5	
E	E6	4				3.6 / 10.4	99.92	63.2	

Offline results: Head number, head place

- Reducing the total number of MA heads was not a solution (vs. C*, F1)
- Placing multiple MA heads in upper layers is important

							dev-clean/dev-other			
ID	D _{lm}	H _{ma}	H ^{total} ma	W	H _{ca}	Head-sync	%WER	Boundary coverage	Streamability	
C1		1	6				4.9 / 11.7	99.38	15.7	
C2	0	1	6	4	1	-	3.7 / 10.4	99.86	35.9	
C3		2	12				3.5 / 10.7	72.08	0.0	
D1	2		20				3.3 / 9.9	99.78	37.4	
D2	3	4	16	16	1	\checkmark	3.7 / 10.8	99.83	36.5	
D3	4		12				3.5 / 10.4	99.93	60.4	
E1	2		20				3.3 / 10.2	99.78	40.6	
E2	3		16		2		3.6 / 10.3	99.87	51.2	
E3	4	Л	12	10			3.5 / 10.7	99.92	50.0	
E4	2	4	20	10		V	3.3 / 9.8	99.91	77.9	
E5	3		16		4		3.4 / 9.9	99.90	84.5	
E6	4		12				3.6 / 10.4	99.92	63.2	
F1	0	1	6	16	4	_	3.5 / 10.5	96.23	40.6	

The rest 15.5% was able to continue streaming decoding until **76.9%** of input frames on overage

Streaming results

			CER [%]		
	Model	Libris	peech		
		test-clean	test-other		AISHELL -1
	Transformer	3.3	9.1	10.1	6.4
	+ data augmentation	2.8	7.0	-	-
Offline	++ large	2.5	6.1	-	-
	MMA (E5)	3.4	9.9	10.5	6.5
	Triggered attention [Moritz+ 2020]	2.8	7.2		
	CIF [Dong+ 2020]	3.3	9.7		
	MoChA [Inaguma+ 2020]	4.0	9.5	11.3	
	MMA [Tsunoo+ 2020]				9.7
Streaming	MMA (narrow chunk)	3.5	11.1	11.0	7.5
	MMA (wide chunk)	3.3	10.5	10.2	6.6
	+ data augmentation	3.0	8.5	-	-
	++ large	2.7	7.1	-	-

- Streaming encoder: chunk-hopping mechanism ($N_l / N_c / N_r$)
 - narrow: 960ms/640ms/320ms
 - wide: 640ms/1280ms/640ms
- Data augmentation: speed perturbation + SpecAugment

Conclusion

Observation

• Cross-attention heads in the lower decoder layers do no learn clear alignments

Proposals

- Four methods to stabilize the streaming inference with MMA-based Transformer ASR
- (1) HeadDrop, (2) head pruning, (3) chunkiwe multihead attention, (4) headsynchronous beam search decoding

Future work

- Reduce perceived latency caused by delayed token generation similar to RNNbased methods [Inaguma+ 2020]
- Analyze what lower decoder layers in Transformer ASR learn