
Toward low-latency and accurate
simultaneous interpreta4ons from speech

Hirofumi Inaguma
Ph.D. candidate, Kyoto University, Japan

12/09/2020

Agenda

uStreaming end-to-end automa0c speech recogni0on (ASR)

• Monotonic chunkwise a/en0on (MoChA) [Chiu+ 2018]

• How to reduce latency with alignment informa0on?

• Where to apply? (encoder/decoder)
Ø Minimum Latency Training Strategies for Streaming Sequence-to-Sequence ASR [ICASSP 2020]

• Leverage CTC alignment (hybrid ASR-free)
Ø CTC-synchronous Training for Monotonic A/en0on Model [Interspeech2020]

uNon-autoregressive end-to-end speech transla0on: A first study

• Condi0onal masked language model (CMLM) [Ghazvininejad+ 2019]

• How to es0mate target lengths from speech directly?
Ø Orthros: Non-autoregressive End-to-end Speech Transla0on with Dual-decoder [under review]

2

Background: Hybrid ASR system

• Tradi9onal approach (s9ll dominant in produc9on system)

! " # = ! # " !(")
!(#)

• Inference
'" = arg max

"
!("|#)

= arg max
"

! # " !(")

! Rare words, low-resource, module update (customiza9on)
" Exper9zed knowledge

3

Language model (LM)Acoustic model (AM)

ASR

" = (./, … , .2)
(reference)

'" (prediction)

= (3/, … , 34)

" (word) -> 5 (pronounce) -> 6 (HMM state)

Background: End-to-end ASR system

• Learn a direct mapping func;on !(#) to maximize % & '

! Quick development, scalability
" Rare words, low-resource, customiza;on

uTime-synchronous model (' = |*&|)
• Connec&onist temporal classifica&on (CTC) [Graves+ 2006]

• RNN-Transducer (RNN-T) [Graves+ 2013]

• Recurrent neural aligner (RNA) [Sak+ 2017]

uLabel-synchronous model (' ≠ |*&|)
• A;en&on-based RNN encoder-decoder [Bahdanau+ 2016]

• Transformer [Vaswani+ 2017]

4

Encoder

CTC

Encoder

Joint network

Predic/on
network

History

RNN-T

Encoder

Decoder

Encoder-decoder

Streaming ASR

5

• Transcribe speech before a speaker finalizes their turn
• Applica:ons

üLive cap:oning
üDialogue system
üSimultaneous transla:on

• RNN-T is dominant in the industry
! Stable inference thanks to frame-wise predic:on
"Memory-consuming training (-> small mini-batch size)

üDistributed training (a log of GPUs)
üEfficient implementa:on (not publicly available in general)
üSmall vocabulary size etc. are required

" Large search space due to frame-wise predic:ons (slow inference)

Challenges in label-synchronous streaming ASR

•Why label-sync. models instead of RNN-T?
ØSmall memory consump?on
ØSmall search space (fast inference)

• Challenges in label-sync. streaming models
1. Need to modify the decoding scheme

ØThe whole encoder outputs are required to generate the first token in
general seq2seq models

2. Poor performance for long-form speech
ØExposure bias (not occur in frame-synchronous models such as RNN-T)

6

Streaming attention-based encoder-decoder models

7

Learn when to generate the next token (segment audio) on the encoder side

Learn when to generate the next token (segment audio) on the decoder side
uMonotonic chunkwise a8en9on (MoChA) [Raffel+ 2017], [Chiu+ 2018]

Learn to detect token boundaries via stochas?c binary decision

Flexible audio segmenta?on policy
uTriggered a8en9on [Moritz+ 2018]

Global aIen?on over past encoder outputs truncated by CTC spikes

uAdap9ve computa9on steps (ACS) [Li+ 2018]
Learn how many tokens to generate with encoder outputs (hal?ng mechanism)

uCon9nuous Integrate-and-Fire (CIF) [Dong+ 2019]
Fine-grained version of ACS

Fixed audio segmenta?on policy
uNeural Transducer [Jailty+ 2015]

AIen?on mechanism for a fixed size of block

• Simple framework
• Good results
• Efficient training
• Linear ;me inference

And more…
• Windowing approaches
• Incremental decoding
• Reinforcement learning

MoChA (test time) [Chiu+ 2018]

e.g., ! = 4 (chunk size: 4)

O
ut

pu
t $

Encoder outputs % = (ℎ(, … , ℎ+)

-(,. = 1

0(,: -.,2 = 1

0.,: -3,2 = 1

03,: -2,4 = 1

02,: -5,6 = 1

05,:

1. Hard monotonic a.en0on [Raffel+ 2017]: whether to a.end or not

2. Chunkwise a.en0on: so9 a.en0on over a small window of size !

!

8

78,9 = MonotonicEnergy ℎ9, E8

F8,9 = G(78,9) (selecIon probability)

-8,9~Bernoulli(F8,9)

: Attend (-8,9 = 1)

: Not aMend (-8,9 = 0)

! Not differen+able

ℎ9: encoder state
E8: decoder state

MoChA (training .me) [Chiu+ 2018]

Marginalize

!",$ = &",$ '
()*

$
!")*,(+

,-(

$)*
1 − &",,

= 1 − &",$)*
01,234
51,234

+ !")*,$

A<end Not attend
Previous a<en.on

: A<end at (8 − 1)-th step

: Not a<end

: A<end at 8-th step

8

8 − 1

Encoder outputs : = (ℎ*, … , ℎ=)

O
ut

pu
t >

Can be implemented
efficiently in parallel with ?

9

Calculate expected
alignments @

Lookahead latency and accuracy trade-off in streaming ASR

• Future information (lookahead) is very important to improve accuracy
• Large lookahead leads to large algorithmic latency

ØCan be controlled on demand

10Lookahead frame [ms]

9

10

11

12

13

14

0 50 100 150 200 250 300 350 400 450 500

WER vs. latency on TEDLIUM2

W
ER

Delayed token genera.on problem

!Latency

Gold boundary
Predicted boundary

Baseline
Goal

Minimize perceived latency
while keeping accuracy

• Decision boundaries (yellow dots) are delayed from the corresponding acoustic boundary
1. Unidirectional encoder (lacking the future information)
2. Sequence-level criterion (utilizing as many future frames as possible to maximize the log-likelihood)

• Increase user perceived latency
ØSimilar behaviors have been reported in CTC [sak+ 2015] and RNN-T [Li+ 2019]

11

Proposed methods

• Leverage external frame-level alignments extracted from the hybrid
ASR system

• Inves=gate where to apply alignment informa=on to streaming
encoder-decoder model
ØEncoder side

1. Mul=-task learning with frame-wise CE
2. Pre-training with frame-wise CE

ØDecoder side
3. Delay constrained training (DeCoT)
4. Minimum latency training (MinLT)

12

The acoustic model
in the hybrid systemEncoder

• Mul5-task w/ framewise CE (MTL-CE)

• Pre-training w/ framewise CE (PT-CE)

Frame CE
layer

Leverage hard alignments on the encoder side

Linear 1 Linear 2

Concat

MoChA
decoder

S2S CE loss ℒ"#"

• Minimum latency training (MinLT)

Leverage hard alignments on the decoder side

• Delay constrained training (DeCoT)

O
ut

pu
t $

: AKend (%&'(,*)

: Not aKend

: Attend (%&,*)

Marginalize

Encoder outputs +

�
Alignment ,

Alignment ,'- Expected latency loss ℒ./012

Word alignments

Overview

Leveraging word alignments extracted from the hybrid system 13

1. Multi-task learning w/ framewise CE (MTL-CE)

uObjec?ve func?on

ℒ"#"$% = 1 −)*+ ℒ,-,(/|1) +)*+ℒ*+(4|1) (0 ≤)*+ ≤ 1)

• Mo?va?on: align encoder outputs to the true acous?c loca?on

uInsert linear boGleneck layers
• Inspired by the CTC acous?c model [Yu+ 2018]

Encoder

MoChA
decoder

Frame CE
layer

Encoder

MoChA
decoder

Linear 1 Linear 2

Concat

Frame CE
layer

Inference

MoChA Frame CE

Train both branches
from scratch

14

2. Pre-training with framewise CE (PT-CE)
u2-staged training
• Mo:va:on

ØStart training from well-aligned encoder representa:ons
ØDo not have to tune the framewise CE weight !"#

• No linear boDleneck layers

Encoder

Frame CE
layer

Encoder

MoChA
decoder

Stage-1 Stage-2

Discarded

Ini:alized with
random values

15

The acoustic model
in the hybrid systemEncoder

• Mul5-task w/ framewise CE (MTL-CE)

• Pre-training w/ framewise CE (PT-CE)

Frame CE
layer

Leverage hard alignments on the encoder side

Linear 1 Linear 2

Concat

MoChA
decoder

S2S CE loss ℒ"#"

• Minimum latency training (MinLT)

Leverage hard alignments on the decoder side

• Delay constrained training (DeCoT)

O
ut

pu
t $

: AJend (%&'(,*)

: Not aJend

: Attend (%&,*)

Marginalize

Encoder outputs +

�
Alignment ,

Alignment ,'- Expected latency loss ℒ./012

Word alignments

Overview

16

3. Delay constrained training (DeCoT)
Marginalize

�
Alignment!

Alignment"

Encoder outputs # = (ℎ', … , ℎ*)

O
ut

pu
t
,

: A?end at (- − 1)-th step

: Not attend

: A?end at --th step

01,2 = 31,2 1 − 31,24'
01,24'
31,24'

+ 014',2 (6 ≤ b1 + 9)

0 (otherwise)

b1: gold boundary

Removed

• Remove inappropriate paths whose boundaries surpass the actual

acoustic boundary more than a fixed acceptable latency 9 [frames]

Decayed quickly
because ∑2 02 ≤ 1

17

3. Delay constrained training (DeCoT)

Quan8ty regulariza8on
• Add a regulariza8on term to keep ∑" #$," = 1
• Originally proposed in CIF [Dong+ 2019] with a different mo8va8on

ℒ)*+ = |- −/
$01

2
/
"01

3
#$," |

ℒ45467 = ℒ898 + ;)*+ℒ)*+ (;)*+ ≥ 0)

-: the number of tokens in the reference

18

(quan8ty loss)

4. Minimum latency training (MinLT)

uObjective function
• Directly minimize the expected latency ℒ"#$%&

ℒ"#$%& =
1
)*+,-

.
|*
0,-

1
23+,0 − b+|

ℒ7879: = ℒ;<; + >"#$%&ℒ"#$%& (>"#$%& ≥ 0)

• Motivation: reduce latency more flexibly
ØDeCoT assumes the fixed latency for each token

uRelated work
• Latency loss has been investigated in simultaneous NMT [Arivazhagan+ 2019]

• Non-silence frames are not distributed uniformly over the input speech in ASR

Expected boundary

(b+: reference boundary for C-th token)

19

Experimental condition

Data
Train: Microsoft Cortana voice assistant (3.4k hours)
Validation: Sampled disjoint 4k utterances form the training set
Test: 5.6k utterances

Feature 80-dim log-mel fbank (3 frames stacked, 30ms per frame)

Output unit Mixed units (34k)

Architecture
Offline: 512-dim (per direction) 6-layer BiGRU encoder
Streaming: 1024-dim 6-layer GRU encoder
Decoder: 512-dim 2-layer GRU

Optimization Adam

Decoding Beam width: 8, no LM

• Word-level alignments -> subword-level alignments
• Divide duraZon per word by the raZo of the character length of each subword

• Warm start training
• Start DeCoT and MinLT from the baseline MoChA to stabilize training

20

Evaluation metric: Token emission latency

• Averaged time difference between a predicted boundary !"#$ and the gold
boundary "#$

Corpus-level latency (averaged per token)

Δ&'()*+ =
1

∑$/01 |3$|4$/0

1
4
#/0

|35|
(!"#$ − "#$)

• Report 50-th (TEL@50) and 90-th percentile (TEL@90)
• Perform teacher-forcing when calculating latency to match the sequence lengths

21

Results: Alignments on the encoder side

• MTL-CE reduced latency in propor<on to !"# while degrading WER slightly
• PT-CE also reduced latency but degraded WER too much
• Contras<ve results to previous works using CTC + framewise CE objec<ve

ØMoChA is a label-synchronous model
ØFrame-wise CE on the encoder is not compa<ble with label-wise CE on the decoder

Model WER [%] (↓)
Corpus-level latency [ms] (↓)

TEL@50 TEL@90

Baseline MoChA 9.93 300 642

+ MTL-CE (!"# = 0.1) 10.21 240 583

+ MTL-CE (!"# = 0.3) 10.48 180 591

+ MTL-CE (!"# = 0.5) 11.11 150 637

+ PT-CE 12.74 210 687

40%5.6%

22

Results: Alignments on the decoder side

• DeCoT: large WER reduction and moderate latency reduction (tail part)

• MinLT: small WER reduction and large latency reduction (entire)

• Combination of DeCoT and MinLT reduced latency further, but degraded WER too much

Model WER [%] (↓)
Corpus-level latency [ms] (↓)

TEL@50 TEL@90

Global attention (offline) 8.44 N/A N/A

Baseline MoChA 9.93 300 642

+ DeCoT (" = 4, 120ms) 20.25 30 287

+ DeCoT (" = 8, 240ms) 14.35 150 210

+ DeCoT (" = 12, 360ms) 11.40 210 298

+ DeCoT (" = 16, 480ms) 9.13 240 352

+ DeCoT (" = 24, 720ms) 8.87 270 434

+ DeCoT (" = 32, 960ms) 9.17 300 497

+ MinLT 9.70 180 319

+ DeCoT (" = 16) 12.75 120 239

40%

8.0% 62.9%

23

Alignment visualization

Predicted boundary

Baseline MoChA

DeCoT (! = 16)

24

Summary: alignment information from hybrid ASR

•Alignment informa6on is beneficial when applying it
on the decoder side
! This is NOT purely end-to-end

•Can we remove the dependency to hybrid ASR system
for alignment extrac6on?
ØCTC alignment

25

Optimization problem

1. ∑"#$," = ' is not sa2sfied during training
• (),* is NOT globally normalized over the whole encoder outputs {ℎ*}*./,…1

Ø(),* is not a valid probability distribu2on
Ø(),* a>enuates quickly during marginaliza2on
ØSelec2on probability 2),* is not learnt well

• Enlarge the mismatch between training and test 2me

2. Alignment errors are propagated to later token genera2on
• (),* depends on past alignments
• Backward algorithm cannot be used for (),*

Ø (),* is not a valid probability distribu2on
Ø Autoregressive decoder

• Model needs to learn (1) a proper scale of #$," and (2) accurate decision
boundaries (3 s. t. (),* = 1) at the same 2me

Recap
(),* = 1 − 2),*9/

(),*9/
2),*9/

+ ()9/,*

2),* = ;(=),*)

Problematic for long and
noisy speech utterances

26

Related work: Joint CTC-attention [Kim+ 2017]

• Auxiliary CTC loss encourages the monotonicity between input and
output alignments

ObjecHve funcHon of encoder-decoder model

ℒ"#$ = −'()* + , = −∑./01 '()*(+.|+4., ,)

MulHtask learning with CTC objecHve

ℒ7879: = (1 − <=7>)ℒ"#" + <=7=ℒ=7= (0 ≤ <=7= ≤ 1)

CTC loss
Encoder

S2S decoder CTC layer

ℒ"#"
B (reference)

CB (prediction)
ℒ=7=

D

27

Comparison of boundary posi0ons: CTC vs. MoChA

Baseline

Proposed

Decision boundaries of MoChA shi7
to the right side (future) from the
corresponding CTC spikes

Predicted boundary

• CTC assumes condi0onal independence
Ø Robust to past alignments

• CTC leverages the backward algorithm as well
Ø CTC is more accurate than MoChA in terms of alignments

28

Proposed method: CTC-synchronous training (CTC-ST)

• Leverage CTC’s posterior spikes as reference boundaries for MoChA

• MoChA is trained to mimic the CTC model to generate the similar decision

boundaries

ObjecEve funcEon

ℒ"#$% =
1
()*+,

-
|b*%0% −)

2+,

3
45*,2 |

ℒ789 = |(−)
*+,

-
)
2+,

3
5*,2 |

ℒ0:09; = 1 − <%0% ℒ=:%>9 + <%0%ℒ%0% + <789ℒ789 + <"#$%ℒ"#$% (<"#$% ≥ 0)

• Unless otherwise noted, <789 is set to 0 when using CTC-ST

Expected MoChA boundaryCTC boundary

29

Important regularization

for baseline model

• Encoder network is shared between both branches
• Both branches are jointly op6mized
• CTC alignments are extracted via forced alignment over the transcrip6on

Extraction of CTC alignments

Encoder

MoChA decoder Forced alignments w/ the forward-
backward algorithm

(on-the-fly alignment generation
w/ current parameters)

Most probable CTC path !"
!" = [−&& − ''' − ((−]

Use the leHmost index

!" = [−& − −' −− −(−< +,- >]

�

�

�

 � � � � � � 	 � � 	 � � 	 � � 	 � � 	 � � 	

�

�

�

��

�

�

��

� � � �
�

CTC paths /

CTC layer

30

Curriculum learning strategy

• Applying CTC-ST from scratch is inefficient because ∑"#$% &'" ≪ 1 in

the early training stage

ØDifficult to es;mate the expected boundaries ∑"#$% *&'," accurately

ØPropose curriculum learning strategy composed of two stages

31

Stage-1 (expected to learn a proper scale of &'")

• Train BLSTM encoder + MoChA with quantity regularization until convergence

Stage-2 (expected to learn boundary loca;on)

• Ini;alize with model parameters in stage-1

• Train latency-controlled BLSTM (LC-BLSTM) encoder + MoChA with CTC-ST

NOTE: When using the unidirectional LSTM encoder, the same encoder is used in both stages

Combina(on with SpecAugment

SpecAugment [Park+ 2019]

• On-the-fly data augmentation method over input log-mel filterbank features
• Zero out successive frames in time and frequency bins

Problem of SpecAugment for MoChA
• Recurrency of !",$ can be easily collapsed after the masked region

• The naïve MoChA did not obtain any gains with SpecAugment
• CTC can estimate boundaries accurately even right after the masked region thanks

to the conditional independence assumption per frame
• CTC-ST is expected to improve the effectiveness of SpecAugment for MoChA

Recap
!",$ = 1 − (",$)*

!",$)*
(",$)*

+ !")*,$

32

Experimental condition
Corpus TEDLUM2 (210h, lecture), Librispeech (960h, read)

Feature 80-dim log-mel fbank

Output unit BPE10k units

Architecture

Offline:
4-layer CNN -> 512-dim (per direction) 5-layer BLSTM encoder

Streaming:
4-layer CNN -> 512-dim 5-layer LC-BLSTM encoder or
4-layer CNN -> 1024-dim 5-layer unidirectional LSTM encoder

Decoder: 1024-dim 1-layer LSTM
!: 4 (window size for chunkwise attention in MoChA)

Optimization Adam

Loss weight "#$# = 0.3, ")*+ = 1.0, "-./# = 1.0
Decoding Beam width: 10, shallow fusion with external 4-layers of LSTM-LM

33

Main results: TEDLIUM2 (210h)

Model WER [%]

Offline

BLSTM - Global attention (T1) 9.5

BLSTM - MoChA 12.6

+ Quantity regularization (T2) 9.8

+ CTC-ST 10.2

Streaming

UniLSTM - MoChA 15.0

+ CTC-ST 13.2

LC-BLSTM-40+20 - MoChA 12.2

+ CTCT-ST 10.5

LC-BLSTM-40+40 - MoChA (T5) 11.3

+ CTC-ST (T6) 9.9

+ Quantity regularization 10.1

12.0% (Կ)

13.9% (Կ)

12.3% (Կ)

22.2% (Կ)

IniValizaVon

Initialization

34

Latency-controlled BLSTM

LC-BLSTM-!"+ !#
IPQ�TJ[F
	NT

MPPLBIFBE�GSBNF
	NT

• CombinaVon of CTC-ST and quanVty regularizaVon was not effecVve

Ø CTC-ST has a similar effect to improve the scale of $%&
• Curriculum learning was effecVve

Results of curriculum learning

Model
Quantity

regularization
CTC-ST WER [%]

LC-BLSTM-40+40 - MoChA
(from scratch)

✔ - 12.3

- ✔ 10.9

LC-BLSTM-40+40 - MoChA
(from BLSTM - MoChA)

- - 16.9

✔ - 11.3

- ✔ 9.9

✔ ✔ 10.1

• Seeding by BLSTM - MoChA was effecQve
• CombinaQon of CTC-ST and quanQty regularizaQon was not effecQve

ØCTC-ST has a similar effect to improve the scale of !"#
• Curriculum learning was effecQve

ØQuanQty regularizaQon (stage-1) -> CTC-ST (stage-2)

ℒ%&%'(= 1 − ,-%- ℒ.&-/' + ,-%-ℒ-%- + ,12'ℒ12' + ,345-ℒ345-

35

2VBOUJUZ�SFHVMBSJ[BUJPO 5�45

Results with SpecAugment

Model ! " WER [%]

Offline

Transformer [Karita+ 2019] 30 40 8.1

BLSTM - Global attention [Zeyer+ 2019] N/A N/A 8.8

BLSTM - Global attention

- - 9.5

27 100 8.1

Streaming

LC-BLSTM-40-+40 - MoChA

(seed: BLSTM - MoChA)

- - 11.3

27 100 12.8

27 50 11.0

13 50 11.2

+ CTC-ST

- - 9.9

27 100 9.0

27 50 8.6

13 50 9.0

• MoChA did not benefit from SpecAugment w/o CTC-ST

• CTC-ST was robust to the input mask size

• Achieved the comparable performance to the offline model (8.1 vs. 8.6)

!

"

36

.BYJNVN�UJNF�NBTL�TJ[F.BYJNVN�GSFRVFODZ�NBTL�TJ[F

13.1% (Կ)

WER vs. input sequence length

• CTC-ST improved WER for long-form u<erances

37

Results on Librispeech (960h)
Model

WER [%]

Test-clean Test-other

Offline

BLSTM - global attention 3.1 9.5

+ SpecAugment (! = 27, & = 100) 2.8 7.6

BLSTM - MoChA 3.6 10.5

+ Quantity regularization (T2) 3.3 10.0

Streaming

UniLSTM - MoChA 5.3 14.5

+ CTC-ST 4.7 13.6

+ SpecAugment 4.2 11.2

LC-BLSTM-40+40 - MoChA 4.1 11.2

+ SpecAugment (! = 13, & = 50) 4.0 9.5

+ SpecAugment (! = 27, & = 50) 4.8 9.3

+ SpecAugment (! = 27, & = 100) 5.0 9.7

+ CTC-ST 3.9 11.2

+ SpecAugment (! = 13, & = 50) 3.6 9.4

+ SpecAugment (! = 27, & = 50) 3.5 9.1

+ SpecAugment (! = 27, & = 100) 3.6 9.2

11.3/6.2% (Կ)

10.2/18.7% (Կ)

8.3/4.7% (Կ)

IniWalizaWon

Initialization

38

Comparison with previous works on Librispeech

Model
WER [%]

Test-clean Test-other

LSTM - MoChA + MWER [Kim+ 2019] 5.6 15.6
LSTM - MoChA + {BPE, char}-CTC + SpecAugment [Garg+ 2019] 4.4 15.2
LSTM - MoChA + CTC-ST + SpecAugment (ours) 4.2 11.2

LC-BLSTM - sMoChA [Miao+ 2019] 6.0 16.7
LC-BLSTM - MTA [Miao+ 2020] 4.2 12.3
LC-BLSTM - MoChA + CTC-ST (ours) 3.9 11.2
+ SpecAugment 3.5 9.1

39

Hybrid ASR alignment vs. CTC alignment (TEDLIUM2)

40

Alignment Model WER [%] (↓)
Corpus-level latency [ms] (↓)

TEL@50 TEL@90

- UniLSTM MoChA 15.0 280 680

CTC
+ CTC-ST 13.2 160 360

+ CTC-ST † 11.6 200 360

Hybrid ASR

+ DeCoT (" = 12, 480ms) † 11.2 200 320

+ DeCoT (" = 16, 640ms) † 11.0 280 440

+ DeCoT (" = 20, 800ms) † 11.3 240 400

+ DeCoT (" = 24, 960ms) † 11.7 280 480

+ MinLT † 11.7 240 360

† SpecAugment is used

• CTC-ST not only improves WER but also reduces token emission latency

• CTC-ST is as good as DeCoT/MinLT for latency reducZon w/o external alignment

Hybrid ASR alignment vs. CTC alignment (Librispeech)

41

Alignment Model
WER [%] (↓) Corpus-level latency [ms] (↓)

test-clean test-other TEL@50 TEL@90

- UniLSTM MoChA 5.3 14.5 360 560

CTC
+ CTC-ST 4.7 13.6 240 400

+ CTC-ST † 4.2 11.2 280 400

Hybrid ASR
+ DeCoT (" = 16, 640ms) † 4.3 11.5 320 440

+ MinLT † 4.7 11.8 320 480

† SpecAugment is used

• When training data is large, CTC alignment is very accurate and reliable

Non-autoregressive
End-to-end Speech Translation

Background: End-to-end speech transla5on (E2E-ST)

Pros.
• Simplified architecture
• Avoid error propaga5on from ASR module
• Low-latency inference
• Endangered language documenta5on

Cons.
• Lack of supervised training data

• Most previous works focused on improving transla5on quality
• E2E-ST is conceptually suitable for fast decoding than cascaded systems

ØHowever, such evalua5on has not been inves5gated so far

43

Translation decoder

Target transla5on

Speech encoder

E2E-ST

Source speech

Low-latency E2E-ST

44

Low-latency
inference

Simultaneous, streaming

Decoding speed-up, offline
(this work)

Autoregressive (AR) sequence generation

uNotation
• ! = ($%,… , $() (input speech)
• * = +%,… , +, (target translation)
• *-./ = (+%-./, … , +,012-./) (source transcription)

uAutoregressive decoder
ØDecompose a probability distribution of * given ! into a chain of conditional

probabilities from left to right

3 * ! =4
56%

,
37.(+5|+95, !)

ØOptimized with cross-entropy loss ℒ7. = −log37.(*|!)
ØFinish decoding after generating <eos>

45

Danke (German)

Thank you (English)

English speech

Non-autoregressive (NAR) sequence generation

uMo6va6on
• AR le8-to-right decoding s6ll suffers from slow inference
• Incremental decoding does not enjoy the computa6onal power of GPU/TPU

ØToward parallel sequence genera6on

uNon-autoregressive decoder [Gu+ 2018]

ØAssume condi6onal independence among output tokens

! " # =%
&'(

)
!*+,(.&|#)

ØPredict target length in advance
e.g., Fer6lity model, linear classifier etc.

46

https://arxiv.org/abs/1711.02281

Iterative refinement model (more accurate at the cost of speed)

Modeling choice of NAR decoding

47

Single forward pass model (faster but less accurate)

Latent variable model
• FlowSeq [Ma+ 2019]
• Delta posterior [Shu+ 2020]

Alignment model
• CTC [Libovický+ 2018]
• CRF [Sun+ 2019]

InserJon-based model
• Levenshtein Transformer [Gu+ 2019]
• InserJon-deleJon Transformer [Ruis+ 2019]
• KERMIT [Chan+ 2019]
• InDIGO [Gu+ 2019]

Mask-based model
• Conditional masked language model (CMLM)

[Ghazvininejad+ 2019]
• Semi-autoregressive training (SMART) [Ghazvininejad+ 2020]
• Aligned XE [Ghazvininejad+ 2020]
• Disentangled Context Transformer [Kasai+ 2020]
• Imputer [Saharia+ 2020]

Naïve model
• NAT [Gu+ 2018]
• NAT-REG [Wang+ 2019]
• bag-of-ngram loss [Shao+ 2020]

Energy-based model
• ENGINE [Tu+ 2020]

https://arxiv.org/abs/1909.02480
https://arxiv.org/abs/1908.07181
https://arxiv.org/abs/1811.04719
https://arxiv.org/abs/1910.11555
https://arxiv.org/abs/1905.11006
https://arxiv.org/abs/2001.05540
https://arxiv.org/abs/1906.01604
https://arxiv.org/abs/1902.01370
https://arxiv.org/abs/1904.09324
https://arxiv.org/abs/2001.08785
https://arxiv.org/abs/2004.01655
https://arxiv.org/abs/2001.05136
https://arxiv.org/abs/2004.07437
https://arxiv.org/abs/1711.02281
https://arxiv.org/abs/1902.10245
https://arxiv.org/abs/1911.09320
https://arxiv.org/abs/2005.00850

Modeling choice in E2E-ST

• Single-pass model requires a copy of encoder output to ini;alize decoder input
! Non-silence speech frames are NOT uniformly distributed over input speech
! Using intermediate predic;on from ASR sub-module (e.g., CTC) contradicts the mo;va;on to
alleviate error propaga;on by E2E modeling

• Itera;ve refinement model can flexibly trade quality and latency during inference
by changing the number of itera;ons

• Want to keep trainability with auxiliary tasks (ASR/MT)
ØEncoder-decoder architecture

48

We focus on conditional masked language model (CMLM) [Ghazvininejad+ 2019]
ü Easy implementation
ü Good translation performance

Proposed framework: Orthros

uChallenge: target length prediction from speech
• Flexible sequence length: pause, speaking rate, language etc.
• ! ≫ |$| even after downsampling
• Rescoring multiple candidates from NAR model with separate AR model?

Ø Extra computation for speech encoding by AR model is not negligible

uProposed framework: Orthros
ØAR and NAR decoders on the shared speech encoder
ØUnified architecture, trainable in an end-to-end fashion
ØSelect the most probable candidate from NAR decoder by scores from AR

decoder (AR decoder can generate scores in parallel)

49

Encoder

NAR decoder AR decoder

Candidate
selecKon

System overview: Orthros

50

Multi-Head Self-Attention

Multi-Head Encoder-Decoder Attention

Feed Forward

Self-A>en?on layers

So@max

!"# !"$!"% !"& !"' !"((!"(#!"([MASK] [MASK] [MASK][MASK] [MASK]

"# "$ ") "% "* "& "+ "' "(, "(("(# "($"(

× ./01Length
predictor

CNN layers

Autoregressive (AR) decoder

Speech encoder

Candidate selec?on

Length es?ma?on

Non-autoregressive (NAR) decoder

×.021

CTC-based ASR

CMLM: inference

uMask-predict algorithm [Ghazvininejad+ 2019]

• Alternate two operations (mask, predict) for a constant number of iterations !

• "#$%&'
()) ⊂ #(),-) (masked tokens at .-th iteration, 1 ≤ . ≤ !)

• "#12&
()) = #(),-) ∖ "#$%&'

()) (observed tokens at .-th iteration)

• Initialize "#12&
(5) with [MASK]

1. Mask operation

• Mask out 6) tokens having the lowest confidence scores (6) = 78 9
:,)

)
)

2. Predict operation
• Take the most probable token at every masked position ; and update <=

()) ← <=
(),-)

<=
()) = argmax

DE∈G
HIJ(K=| "#12&

) , N)

O=
()) ← HIJ(<=

())| "#12&
) , N)

51

Predicted target length

CMLM: inference

uTarget length prediction
• Take top-! sequence lengths from length distribution "#$

uLength parallel decoding
• Predict multiple ! sequences having different lengths in parallel

Ø In actual implementation, perform batch-decoding, i.e., input/output tensor size: [!, %&'()]
• Select the most probable sequence at the last iteration among ! candidates

*+,-. = 1
%&1234

%5
log "9,;'#'<

52

CMLM: training

uNotation
• !"#$% ⊂ ! (masked tokens in ground-truth !)
• !'($ ⊂ ! ∖ !"#$% (observed tokens in !)

uTraining objective
• The number of masked tokens is sampled from uniform distribution *(1,.)

ℒ1"2" = − 5
6∈89:;<

log@1"2"(A|!'($, C)

53

• Bridge the gap between training and test condi2ons by feeding output
from the model to the CMLM decoder

uProcedure

1. Obtain predic2on at all posi2ons (!") from the current model by feeding "#$%
2. Obtain new decoder input !"#$% by applying random mask to !"
3. Train model to predict " given !"#$%

uTraining objec2ve

ℒ'()(= −,
-∈!/

log3'()((5| !"#$%, 8)

Semi-autoregressive training (SMART) [Ghazvininejad+ 2020]

54

No gradient flow

CMLM decoder

"#$%

!"
CMLM decoder

!"#$%

:"′ "Mask

" Mask

Unlike original CMLM, cross-entropy loss is

calculated at all position regardless of mask

CE loss

uTraining objec-ve

ℒ"#"$% = (1 − *+,%,)ℒ+,%, . / + *$1ℒ$1 . /

+*%2ℒ%2(3|/) + *$51ℒ$51(.51+|/)

• Length predic-on: ℒ%2 3 / = −log9%2(3|/)
• ASR (CTC): ℒ$51 .51+ / = −log9+"+(.51+|/)

Orthros: training

55

NAR decoder AR decoder

ASRLength
prediction

Orthros: inference

1. Mask-predict for ! itera6ons

2. Candidate selec6on with AR decoder
• A=er the last itera6on, feed outputs from the NAR decoder to the AR decoder

in parallel
• Obtain sequence-level scores from the AR decoder
• Pick up the most probable candidate among " candidates

#$%&' = 1
*+,-./

*0
log 4-,67

56

Experimental se.ng

uDatasets
• Must-C En-De (229k pairs, 408h), En-Fr (275k pairs, 492h)
• Fisher-CallHome Spanish (Es->En, 138k pairs, 170h)
• Libri-trans (En->Fr, 45k pairs, 100h)

uModel configuration
• Implemented with ESPnet-ST [Inaguma+ 2020]

• Transformer base/large (!"#$%& = 256/512, !.. = 2048,2 = 4/8)
• 2-layers CNN->12-layers encoder, 6-layers decoder
• Sequence-level knowledge distillation (Seq-KD) [Kim+ 2016] from text-based AR MT

model
• Vocabulary size

ØAR: BPE8k (Must-C), 1k (Fisher-CallHome, Libri-trans)
ØNAR: BPE8k 57

https://www.aclweb.org/anthology/2020.acl-demos.34
https://www.aclweb.org/anthology/D16-1139/

Evaluation metric

uTranslation quality
• 4-gram BLEU

uInference speed
• GPU decoding with a NVIDIA TITAN RTX
• Decoding configuration

üAR: beam width ! ∈ {1,4}
üNAR: iteration (∈ {4,10}, length beam width * = 9
üBatch size: 1

• Averaged over 5 runs

58

Main results: Must-C En-De/En-Fr

59

Model
En-De En-Fr

BLEU Latency [ms] Speedup BLEU

Autoregressive

Transformer (!=1) 21.54 175ms 1.54× 32.26

Transformer (!=4) 23.12 271ms 1.00× 33.84

Transformer + Seq-KD (!=1) 23.88 - - 33.92

Transformer + Seq-KD (!=4) 24.43 - - 34.57

Non-autoregressive

CTC (!=1) 19.40 13ms 20.84× 27.38

Orthros (CMLM, #=4) 18.78 - - 25.99

Orthros (CMLM, #=10+AR decoder) 19.62 - - 27.77

Orthros (CMLM #=10) 20.89 - - 28.74

Orthros (CMLM, #=10+AR decoder) 21.79 - - 30.31

Orthros (SMART, #=4) 20.03 46 5.89× 27.22

Orthros (SMART, #=10+AR decoder) 21.08 61 4.44× 29.30

Orthros (SMART, #=10) 21.25 99 2.73× 29.31

Orthros (SMART, #=10+AR decoder) 22.27 117 2.44× 31.07

+ BPE8k -> BPE16k 22.88 117 2.31× 32.20

+ large (SMART, #=4+AR decoder, $=7) 22.54 59 4.59× 31.24

+ large (SMART, #=10+AR decoder, $=7) 23.92 113 2.39× 33.05

Main results: Must-C En-De/En-Fr

60

Model
En-De En-Fr

BLEU Latency [ms] Speedup BLEU

Autoregressive

Transformer (!=1) 21.54 175ms 1.54× 32.26

Transformer (!=4) 23.12 271ms 1.00× 33.84

Transformer + Seq-KD (!=1) 23.88 - - 33.92

Transformer + Seq-KD (!=4) 24.43 - - 34.57

Non-autoregressive

CTC (!=1) 19.40 13ms 20.84× 27.38

Orthros (CMLM, #=4) 18.78 - - 25.99

Orthros (CMLM, #=10+AR decoder) 19.62 - - 27.77

Orthros (CMLM #=10) 20.89 - - 28.74

Orthros (CMLM, #=10+AR decoder) 21.79 - - 30.31

Orthros (SMART, #=4) 20.03 46 5.89× 27.22

Orthros (SMART, #=10+AR decoder) 21.08 61 4.44× 29.30

Orthros (SMART, #=10) 21.25 99 2.73× 29.31

Orthros (SMART, #=10+AR decoder) 22.27 117 2.44× 31.07

+ BPE8k -> BPE16k 22.88 117 2.31× 32.20

+ large (SMART, #=4+AR decoder, $=7) 22.54 59 4.59× 31.24

+ large (SMART, #=10+AR decoder, $=7) 23.92 113 2.39× 33.05

Semi-autoregressive training (SMART)
• Improved BLEU significantly with no extra

latency during inference

Main results: Must-C En-De/En-Fr

61

Model
En-De En-Fr

BLEU Latency [ms] Speedup BLEU

Autoregressive

Transformer (!=1) 21.54 175ms 1.54× 32.26

Transformer (!=4) 23.12 271ms 1.00× 33.84

Transformer + Seq-KD (!=1) 23.88 - - 33.92

Transformer + Seq-KD (!=4) 24.43 - - 34.57

Non-autoregressive

CTC (!=1) 19.40 13ms 20.84× 27.38

Orthros (CMLM, #=4) 18.78 - - 25.99

Orthros (CMLM, #=10+AR decoder) 19.62 - - 27.77

Orthros (CMLM #=10) 20.89 - - 28.74

Orthros (CMLM, #=10+AR decoder) 21.79 - - 30.31

Orthros (SMART, #=4) 20.03 46 5.89× 27.22

Orthros (SMART, #=10+AR decoder) 21.08 61 4.44× 29.30

Orthros (SMART, #=10) 21.25 99 2.73× 29.31

Orthros (SMART, #=10+AR decoder) 22.27 117 2.44× 31.07

+ BPE8k -> BPE16k 22.88 117 2.31× 32.20

+ large (SMART, #=4+AR decoder, $=7) 22.54 59 4.59× 31.24

+ large (SMART, #=10+AR decoder, $=7) 23.92 113 2.39× 33.05

Candidates selection with AR decoder
• Improved BLEU scores is significantly
• This corresponds to performing one more iteration (about

+15ms)
• CMLM does not have the ability to generate useful

sentence-level scores

Main results: Must-C En-De/En-Fr

62

Model
En-De En-Fr

BLEU Latency [ms] Speedup BLEU

Autoregressive

Transformer (!=1) 21.54 175ms 1.54× 32.26

Transformer (!=4) 23.12 271ms 1.00× 33.84

Transformer + Seq-KD (!=1) 23.88 - - 33.92

Transformer + Seq-KD (!=4) 24.43 - - 34.57

Non-autoregressive

CTC (!=1) 19.40 13ms 20.84× 27.38

Orthros (CMLM, #=4) 18.78 - - 25.99

Orthros (CMLM, #=10+AR decoder) 19.62 - - 27.77

Orthros (CMLM #=10) 20.89 - - 28.74

Orthros (CMLM, #=10+AR decoder) 21.79 - - 30.31

Orthros (SMART, #=4) 20.03 46 5.89× 27.22

Orthros (SMART, #=10+AR decoder) 21.08 61 4.44× 29.30

Orthros (SMART, #=10) 21.25 99 2.73× 29.31

Orthros (SMART, #=10+AR decoder) 22.27 117 2.44× 31.07

+ BPE8k -> BPE16k 22.88 117 2.31× 32.20

+ large (SMART, #=4+AR decoder, $=7) 22.54 59 4.59× 31.24

+ large (SMART, #=10+AR decoder, $=7) 23.92 113 2.39× 33.05

Vocabulary size
• Large BPE vocabulary improved BLEU scores
• This was not true for AR models (shown in

the later slide)

Main results: Must-C En-De/En-Fr

63

Model
En-De En-Fr

BLEU Latency [ms] Speedup BLEU

Autoregressive

Transformer (!=1) 21.54 175ms 1.54× 32.26

Transformer (!=4) 23.12 271ms 1.00× 33.84

Transformer + Seq-KD (!=1) 23.88 - - 33.92

Transformer + Seq-KD (!=4) 24.43 - - 34.57

Non-autoregressive

CTC (!=1) 19.40 13ms 20.84× 27.38

Orthros (CMLM, #=4) 18.78 - - 25.99

Orthros (CMLM, #=10+AR decoder) 19.62 - - 27.77

Orthros (CMLM #=10) 20.89 - - 28.74

Orthros (CMLM, #=10+AR decoder) 21.79 - - 30.31

Orthros (SMART, #=4) 20.03 46 5.89× 27.22

Orthros (SMART, #=10+AR decoder) 21.08 61 4.44× 29.30

Orthros (SMART, #=10) 21.25 99 2.73× 29.31

Orthros (SMART, #=10+AR decoder) 22.27 117 2.44× 31.07

+ BPE8k -> BPE16k 22.88 117 2.31× 32.20

+ large (SMART, #=4+AR decoder, $=7) 22.54 59 4.59× 31.24

+ large (SMART, #=10+AR decoder, $=7) 23.92 113 2.39× 33.05

Large model
• Increasing model capacity was very

important for NAR models
• This was not true for AR models (shown in

the later slide)

Main results: Must-C En-De/En-Fr

64

Model
En-De En-Fr

BLEU Latency [ms] Speedup BLEU

Autoregressive

Transformer (!=1) 21.54 175ms 1.54× 32.26

Transformer (!=4) 23.12 271ms 1.00× 33.84

Transformer + Seq-KD (!=1) 23.88 - - 33.92

Transformer + Seq-KD (!=4) 24.43 - - 34.57

Non-autoregressive

CTC (!=1) 19.40 13ms 20.84× 27.38

Orthros (CMLM, #=4) 18.78 - - 25.99

Orthros (CMLM, #=10+AR decoder) 19.62 - - 27.77

Orthros (CMLM #=10) 20.89 - - 28.74

Orthros (CMLM, #=10+AR decoder) 21.79 - - 30.31

Orthros (SMART, #=4) 20.03 46 5.89× 27.22

Orthros (SMART, #=10+AR decoder) 21.08 61 4.44× 29.30

Orthros (SMART, #=10) 21.25 99 2.73× 29.31

Orthros (SMART, #=10+AR decoder) 22.27 117 2.44× 31.07

+ BPE8k -> BPE16k 22.88 117 2.31× 32.20

+ large (SMART, #=4+AR decoder, $=7) 22.54 59 4.59× 31.24

+ large (SMART, #=10+AR decoder, $=7) 23.92 113 2.39× 33.05

NAR vs AR
• Achieved comparable BLEU scores to baseline

Transformer
• Seq-KD boosted AR model’s performance further
• This differs from MT:

Ø MT: large AR teacher-> small AR student
Ø E2E-ST: AR MT teacher -> AR E2E-ST student

Quality and latency trade-off on Must-C En-De

65�[! (E2E-ST)], �(", #), �[! (ASR), ! (MT)]

Quality and latency trade-off on Must-C En-De

66

Baseline NAR model
• Larger length beam was not effective

when AR decoder was NOT used

�[! (E2E-ST)], �(", #), �[! (ASR), ! (MT)]

Quality and latency trade-off on Must-C En-De

67

Effectiveness of candidate selection
• Significantly improved BLEU scores for every length beam width !
• Large ! is effective with AR decoder
• Similar BLEU scores can be achieved with a smaller iteration "

�[# (E2E-ST)], �(", !), �[# (ASR), # (MT)]

Quality and latency trade-off on Must-C En-De

68

Comparison with AR E2E models
• Orthros (N4) achieved the same BLEU as AR model (A1) with 3× speed-

up for greedy decoding and 1.5× speed-up for beam search decoding

�[& (E2E-ST)], �(', (), �[& (ASR), & (MT)]

Quality and latency trade-off on Must-C En-De

69

Large model
• NAR model obtained large improvements
• Increasing parameters did not improve the

AR model so much
• NAR model outperformed AR model in

translation quality and latency

�[! (E2E-ST)], �(", #), �[! (ASR), ! (MT)]

Quality and latency trade-off on Must-C En-De

70

vs. Cascade system (ASR->MT)
• Cascade systems were much slower than E2E

models

�[! (E2E-ST)], �(", #), �[! (ASR), ! (MT)]

Quality and latency trade-off on Must-C En-De

71

Candidate selection with external AR encoder-
decoder vs. unified architecture (proposal)

• The unified architecture showed smaller
latency with better BLEU scores
Ø No overhead for speech encoding
Ø Smaller memory consumption
Ø Smaller parameters

�[! (E2E-ST)], �(", #), �[! (ASR), ! (MT)]

Results: Fisher-CallHome Spanish/Libri-trans

72

Model

BLEU

Fisher-CallHome Spanish
Libri-transFisher-

test
CallHome-

evltest

Autoregressive

Transformer (!=1) 48.38 18.07 16.52

Transformer (!=4) 48.49 18.90 16.84

Transformer + Seq-KD (!=1) 50.34 19.09 15.91

Transformer + Seq-KD (!=4) 50.32 19.81 16.44

Non-autoregressive

CTC (!=1) 45.97 15.91 12.10

Orthros (CMLM, "=4) 46.03 16.71 12.90

Orthros (CMLM, "=10+AR decoder) 47.80 18.28 13.69

Orthros (CMLM "=10) 48.56 18.60 14.68

Orthros (CMLM, "=10+AR decoder) 49.98 19.71 15.43

Orthros (SMART, "=4) 45.89 17.39 14.17

Orthros (SMART, "=10+AR decoder) 48.73 19.25 14.99

Orthros (SMART, "=10) 47.09 18.25 15.11

Orthros (SMART, "=10+AR decoder) 50.07 20.10 16.08

+ BPE8k -> BPE16k 50.18 19.88 16.22

Ablation study on Fisher-CallHome dev set

73

Model
BLEU

! = # ! = $%
w/o AR w/ AR w/o AR w/ AR

Orthros BPE8k 45.76 49.01 46.88 50.28

- Seq-KD 44.36 47.42 44.25 49.50
- AR decoder 45.53 - 46.94 -
+ length prediction w/ CTC 45.41 48.18 46.79 50.05

• Seq-KD was beneficial (multi-modality problem was alleviated)
• Joint training with AR decoder itself had no impact on BLEU scores
• Linear classifier-based length prediction was better than the CTC-based one

ØCTC-based length prediction: [&' − | *+ |, &' + |
*
+ |], where &' = - &'./0

(-: hyperparameter, &'./0: ASR hypothesis length obtained by CTC greedy decoding)

Effect of vocabulary size on Fisher-CallHome dev set

74

• AR models have a peak around BPE1k (due to data sparseness, 170h)
• Candidate selecFon with AR decoder is always effecFve regardless of BPE size
• Orthros + candidate selecFon conFnued to improve unFl BPE16k

ØMost tokens in vocabulary are “complete” word
ØComplementary effect on the condiFonal independence assumpFon

Conclusion and future work

• Perceived latency reduction for streaming encoder-decoder ASR
• Alignment information is effective on the decoder side
• CTC alignment is as good as alignment from hybrid ASR system

• Fast non-autoregressive decoding for E2E-ST, Orthros
ØAR decoder + NAR decoder on shared speech encoder
ØCandidate selection with AR decoder was very effective to estimate target

lengths
ØReached comparable translation quality to SOTA AR E2E-ST models with more

than 2× latency reduction

75

