Toward low-latency and accurate simultaneous interpretations from speech

Hirofumi Inaguma Ph.D. candidate, Kyoto University, Japan 12/09/2020



## Agenda

#### Streaming end-to-end automatic speech recognition (ASR)

- Monotonic chunkwise attention (MoChA) [Chiu+ 2018]
- *How to reduce latency* with alignment information?
- Where to apply? (encoder/decoder)
  - Minimum Latency Training Strategies for Streaming Sequence-to-Sequence ASR [ICASSP 2020]
- Leverage CTC alignment (hybrid ASR-free)
  - CTC-synchronous Training for Monotonic Attention Model [Interspeech2020]

#### Non-autoregressive end-to-end speech translation: A first study

- Conditional masked language model (CMLM) [Ghazvininejad+ 2019]
- How to estimate target lengths from speech directly?

> Orthros: Non-autoregressive End-to-end Speech Translation with Dual-decoder [under review]

# Background: Hybrid ASR system

• Traditional approach (still dominant in production system)

Acoustic model (AM)  $P(y|x) = \frac{P(x|y)P(y)}{P(x)}$ Language model (LM)

$$\widehat{y} = \arg \max_{y} P(y|x)$$

$$= \arg \max_{y} P(x|y) P(y)$$

$$y \text{ (word)-> } p \text{ (pronounce)-> } s \text{ (HMM state)}$$

$$y = (y_1, \dots, y_U)$$
(reference)
$$\widehat{y}$$
 (prediction)
$$ASR$$

$$ASR$$

$$x = (x_1, \dots, x_T)$$

Rare words, low-resource, module update (customization)
 Expertized knowledge

# Background: End-to-end ASR system

- Learn a direct mapping function  $\varphi(x)$  to maximize P(y|x)
- Quick development, scalability
   Rare words, low-resource, customization

## •Time-synchronous model ( $|x| = |\hat{y}|$ )

- Connectionist temporal classification (CTC) [Graves+ 2006]
- RNN-Transducer (RNN-T) [Graves+ 2013]
- Recurrent neural aligner (RNA) [Sak+ 2017]

## • Label-synchronous model $(|x| \neq |\hat{y}|)$

- Attention-based RNN encoder-decoder [Bahdanau+ 2016]
- Transformer [Vaswani+ 2017]



# Streaming ASR

- Transcribe speech before a speaker finalizes their turn
- Applications
  - ✓ Live captioning
  - ✓ Dialogue system
  - ✓ Simultaneous translation
- RNN-T is dominant in the industry
  - Stable inference thanks to frame-wise prediction
  - Memory-consuming training (-> small mini-batch size)
    - $\checkmark$  Distributed training (a log of GPUs)
    - $\checkmark$  Efficient implementation (not publicly available in general)
    - ✓ Small vocabulary size

- etc. are required
- Large search space due to frame-wise predictions (slow inference)

# Challenges in label-synchronous streaming ASR

- Why label-sync. models instead of RNN-T?
   ➤Small memory consumption
   ➤Small search space (fast inference)
- Challenges in label-sync. streaming models
  - 1. Need to modify the decoding scheme

The whole encoder outputs are required to generate the first token in general seq2seq models

2. Poor performance for long-form speech
 ➢ Exposure bias (not occur in frame-synchronous models such as RNN-T)

## Streaming attention-based encoder-decoder models

Learn when to generate the next token (segment audio) on the encoder side



Learn to detect token boundaries via stochastic binary decision

**Reinforcement** learning





Lookahead latency and accuracy trade-off in streaming ASR

- Future information (lookahead) is very important to improve accuracy
- Large lookahead leads to large **algorithmic** latency

➤Can be controlled on demand



Lookahead frame [ms]

# Delayed token generation problem



• Decision boundaries (yellow dots) are delayed from the corresponding acoustic boundary

- 1. Unidirectional encoder (lacking the future information)
- 2. Sequence-level criterion (utilizing as many future frames as possible to maximize the log-likelihood)
- Increase user perceived latency
  - Similar behaviors have been reported in CTC [sak+ 2015] and RNN-T [Li+ 2019]

# Proposed methods

- Leverage external frame-level alignments extracted from <u>the hybrid</u> <u>ASR system</u>
- Investigate <u>where to apply alignment information</u> to streaming encoder-decoder model

≻Encoder side

- 1. Multi-task learning with frame-wise CE
- 2. Pre-training with frame-wise CE

➢ Decoder side

- 3. Delay constrained training (DeCoT)
- 4. Minimum latency training (MinLT)

## Overview



Leveraging word alignments extracted from the hybrid system



# 2. Pre-training with framewise CE (PT-CE)

## 2-staged training

- Motivation
  - ➤Start training from well-aligned encoder representations
  - $\succ$  Do not have to tune the framewise CE weight  $\lambda_{\rm CE}$
- No linear bottleneck layers



## Overview





# 3. Delay constrained training (DeCoT)

Quantity regularization

- Add a regularization term to keep  $\sum_{j} \alpha_{i,j} = 1$
- Originally proposed in CIF [Dong+ 2019] with a different motivation

U: the number of tokens in the reference

$$\mathcal{L}_{\text{QUA}} = |U - \sum_{i=1}^{U} \sum_{j=1}^{T} \alpha_{i,j} | \quad (\text{quantity loss})$$

 $\mathcal{L}_{\text{total}} = \mathcal{L}_{\text{S2S}} + \lambda_{\text{QUA}} \mathcal{L}_{\text{QUA}} \ (\lambda_{\text{QUA}} \ge 0)$ 

# 4. Minimum latency training (MinLT)

Objective function

- Directly minimize the expected latency  $\mathcal{L}_{MinLT}$ 

Expected boundary

$$\mathcal{L}_{\text{MinLT}} = \frac{1}{U} \sum_{i=1}^{U} |\sum_{j=1}^{T} j \alpha_{i,j} - b_i| \quad (b_i: \text{ reference boundary for } i\text{-th token})$$

$$\mathcal{L}_{\text{total}} = \mathcal{L}_{\text{S2S}} + \lambda_{\text{MinLT}} \mathcal{L}_{\text{MinLT}} \ (\lambda_{\text{MinLT}} \ge 0)$$

Motivation: reduce latency more flexibly
 DeCoT assumes the fixed latency for each token

#### Related work

- Latency loss has been investigated in simultaneous NMT [Arivazhagan+ 2019]
- Non-silence frames are not distributed uniformly over the input speech in ASR

## Experimental condition

| Data         | Train: Microsoft Cortana voice assistant (3.4k hours)<br>Validation: Sampled disjoint 4k utterances form the training set<br>Test: 5.6k utterances |
|--------------|----------------------------------------------------------------------------------------------------------------------------------------------------|
| Feature      | 80-dim log-mel fbank (3 frames stacked, 30ms per frame)                                                                                            |
| Output unit  | Mixed units (34k)                                                                                                                                  |
| Architecture | Offline: 512-dim (per direction) 6-layer BiGRU encoder<br>Streaming: 1024-dim 6-layer GRU encoder<br>Decoder: 512-dim 2-layer GRU                  |
| Optimization | Adam                                                                                                                                               |
| Decoding     | Beam width: 8, no LM                                                                                                                               |

- Word-level alignments-> subword-level alignments
  - Divide duration per word by the ratio of the character length of each subword
- Warm start training
  - Start DeCoT and MinLT from the baseline MoChA to stabilize training

# Evaluation metric: Token emission latency

• Averaged time difference between a predicted boundary  $\widehat{b_i^k}$  and the gold boundary  $b_i^k$ 

Corpus-level latency (averaged per token)

$$\Delta_{\text{corpus}} = \frac{1}{\sum_{k=1}^{N} |\mathbf{y}^k|} \sum_{k=1}^{N} \sum_{i=1}^{|\mathbf{y}^k|} (\widehat{b_i^k} - b_i^k)$$

- Report 50-th (*TEL@50*) and 90-th percentile (*TEL@90*)
- Perform teacher-forcing when calculating latency to match the sequence lengths

# Results: Alignments on the **encoder** side

| Madal                                    |                | Corpus-level la | tency [ms] (↓) |
|------------------------------------------|----------------|-----------------|----------------|
| Model                                    | VV E K [%] (↓) | TEL@50          | TEL@90         |
| Baseline MoChA                           | 9.93           | 300             | 642            |
| + MTL-CE ( $\lambda_{\mathrm{CE}}=0.1$ ) | 10.21 5.6%     | 240 40%         | 583            |
| + MTL-CE ( $\lambda_{\mathrm{CE}}=0.3$ ) | 10.48          | 180             | 591            |
| + MTL-CE ( $\lambda_{\mathrm{CE}}=0.5$ ) | 11.11          | 150             | 637            |
| + PT-CE                                  | 12.74          | 210             | 687            |

- MTL-CE reduced latency in proportion to  $\lambda_{CE}$  while degrading WER slightly
- PT-CE also reduced latency but degraded WER too much
- Contrastive results to previous works using CTC + framewise CE objective
   MoChA is a label-synchronous model

> Frame-wise CE on the encoder is not compatible with label-wise CE on the decoder

## Results: Alignments on the **decoder** side

| Madal                           |                       | Corpus-level la | tency [ms] (↓)       |
|---------------------------------|-----------------------|-----------------|----------------------|
| INIOGEI                         | ₩EN [70] (+)          | TEL@50          | TEL@90               |
| Global attention (offline)      | 8.44                  | N/A             | N/A                  |
| Baseline MoChA                  | 9.93                  | 300             | 642                  |
| + DeCoT ( $\delta$ = 4, 120ms)  | 20.25                 | 30              | 287                  |
| + DeCoT ( $\delta$ = 8, 240ms)  | 14.35                 | 150             | 210                  |
| + DeCoT ( $\delta=12$ , 360ms)  | 11.40 <sup>8.0%</sup> | 210             | 298 <sup>62.9%</sup> |
| + DeCoT ( $\delta$ = 16, 480ms) | 9.13 💙                | 240 40%         | 352                  |
| + DeCoT ( $\delta$ = 24, 720ms) | 8.87                  | 270             | 434                  |
| + DeCoT ( $\delta$ = 32, 960ms) | 9.17                  | 300             | 497                  |
| + MinLT                         | 9.70                  | 180 🗸           | 319                  |
| + DeCoT ( $\delta=16$ )         | 12.75                 | 120             | 239                  |

- DeCoT: large WER reduction and moderate latency reduction (tail part)
- MinLT: small WER reduction and large latency reduction (entire)
- Combination of DeCoT and MinLT reduced latency further, but degraded WER too much

## Alignment visualization



Summary: alignment information from hybrid ASR

- Alignment information is beneficial when applying it on the decoder side
  - This is NOT purely end-to-end
- Can we remove the dependency to hybrid ASR system for alignment extraction?
  - CTC alignment

# Optimization problem

Recap  

$$\alpha_{i,j} = (1 - p_{i,j-1}) \frac{\alpha_{i,j-1}}{p_{i,j-1}} + \alpha_{i-1,j}$$

$$p_{i,j} = \sigma(e_{i,j})$$

## 1. $\sum_{j} \alpha_{i,j} = 1$ is not satisfied during training

- $\alpha_{i,j}$  is <u>NOT globally normalized</u> over the whole encoder outputs  $\{h_j\}_{j=1,..,T}$ 
  - $\geq \alpha_{i,j}$  is not a valid probability distribution
  - $\geq \alpha_{i,j}$  attenuates quickly during marginalization
  - $\geq$  Selection probability  $p_{i,j}$  is not learnt well
- Enlarge the mismatch between training and test time

#### 2. Alignment errors are propagated to later token generation

- $\alpha_{i,j}$  depends on past alignments
- <u>Backward algorithm cannot be used</u> for  $\alpha_{i,j}$ 
  - $\succ \alpha_{i,j}$  is not a valid probability distribution
  - Autoregressive decoder



• Model needs to learn (1) a proper scale of  $\alpha_{i,j}$  and (2) accurate decision boundaries (j s. t.  $\alpha_{i,j} = 1$ ) at the same time

# Related work: Joint CTC-attention [Kim+ 2017]

 Auxiliary CTC loss encourages the monotonicity between input and output alignments

Objective function of encoder-decoder model

$$\mathcal{L}_{s2s} = -\log P(y|x) = -\sum_{i=1}^{U} \log P(y_i|y_{\leq i}, x)$$

Multitask learning with CTC objective

$$\mathcal{L}_{\text{total}} = (1 - \lambda_{\text{ctc}})\mathcal{L}_{\text{s2s}} + \lambda_{\text{ctc}}\mathcal{L}_{\text{ctc}} \quad (0 \le \lambda_{\text{ctc}} \le 1)$$

CTC loss



#### Comparison of boundary positions: CTC vs. MoChA Predicted boundary Output labels (+ \_\_\_wan \_\_\_tr \_\_oper \_\_door Baseline Decision boundaries of MoChA shift to the right side (future) from the corresponding CTC spikes **Dutput labels** \_\_\_\_we \_\_\_\_to \_\_\_\_doors \_\_\_\_for Proposed CTC assumes conditional independence • Robust to past alignments CTC leverages the backward algorithm as well > CTC is more accurate than MoChA in terms of alignments 200 400 600 800

Time [msec]

## Proposed method: CTC-synchronous training (CTC-ST)

- Leverage CTC's posterior spikes as reference boundaries for MoChA
- MoChA is trained to mimic the CTC model to generate the similar decision boundaries

**Objective function** 

CTC boundary Expected MoChA boundary

$$\mathcal{L}_{\text{sync}} = \frac{1}{U} \sum_{i=1}^{U} |\mathbf{b}_i^{\text{ctc}} - \sum_{j=1}^{T} j \alpha_{i,j}|$$

 $\mathcal{L}_{qua} = |U - \sum_{i=1}^{U} \sum_{j=1}^{T} \alpha_{i,j} |$  Important regularization for baseline model

 $\mathcal{L}_{total} = (1 - \lambda_{ctc})\mathcal{L}_{mocha} + \lambda_{ctc}\mathcal{L}_{ctc} + \lambda_{qua}\mathcal{L}_{qua} + \lambda_{sync}\mathcal{L}_{sync} \quad (\lambda_{sync} \ge 0)$ 

• Unless otherwise noted,  $\lambda_{qua}$  is set to 0 when using CTC-ST

# Extraction of CTC alignments

- Encoder network is shared between both branches
- Both branches are jointly optimized
- CTC alignments are extracted via forced alignment over the transcription



CTC paths  $oldsymbol{\pi}$ 

# Curriculum learning strategy

- Applying CTC-ST from scratch is inefficient because  $\sum_{j=1}^{T} \alpha_{ij} \ll 1$  in the early training stage
  - $\succ$  Difficult to estimate the expected boundaries  $\sum_{j=1}^{T} j \alpha_{i,j}$  accurately

➢ Propose curriculum learning strategy composed of two stages

Stage-1 (expected to learn a proper scale of  $\alpha_{ii}$ )

• Train **BLSTM encoder + MoChA** with <u>quantity regularization</u> until convergence

#### Stage-2 (expected to learn boundary location)

- Initialize with model parameters in stage-1
- Train latency-controlled BLSTM (LC-BLSTM) encoder + MoChA with CTC-ST

NOTE: When using the unidirectional LSTM encoder, the same encoder is used in both stages

# Combination with SpecAugment

#### SpecAugment [Park+ 2019]

- On-the-fly data augmentation method over input log-mel filterbank features
- Zero out successive frames in time and frequency bins

#### Problem of SpecAugment for MoChA

- Recurrency of  $\alpha_{i,j}$  can be easily collapsed after the masked region
- The naïve MoChA did not obtain any gains with SpecAugment
- CTC can estimate boundaries accurately even right after the masked region thanks to the conditional independence assumption per frame
- CTC-ST is expected to improve the effectiveness of SpecAugment for MoChA

# mel filterbank features



# Experimental condition

| Corpus       | TEDLUM2 (210h, lecture), Librispeech (960h, read)                                                                                                                                                           |
|--------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Feature      | 80-dim log-mel fbank                                                                                                                                                                                        |
| Output unit  | BPE10k units                                                                                                                                                                                                |
| Architecture | Offline:<br>4-layer CNN -> 512-dim (per direction) 5-layer BLSTM encoder<br>Streaming:<br>4-layer CNN -> 512-dim 5-layer LC-BLSTM encoder or<br>4-layer CNN -> 1024-dim 5-layer unidirectional LSTM encoder |
|              | Decoder: 1024-dim 1-layer LSTM<br><i>w</i> : 4 (window size for chunkwise attention in MoChA)                                                                                                               |
| Optimization | Adam                                                                                                                                                                                                        |
| Loss weight  | $\lambda_{\rm ctc} = 0.3, \lambda_{\rm qua} = 1.0, \lambda_{\rm sync} = 1.0$                                                                                                                                |
| Decoding     | Beam width: 10, shallow fusion with external 4-layers of LSTM-LM                                                                                                                                            |

# Main results: TEDLIUM2 (210h)



• Combination of CTC-ST and quantity regularization was not effective

 $\succ$  CTC-ST has a similar effect to improve the scale of  $\alpha_{ij}$ 

• Curriculum learning was effective

# Results of curriculum learning

Quantity regularization CTC-ST

 $\mathcal{L}_{\text{total}} = (1 - \lambda_{\text{ctc}})\mathcal{L}_{\text{mocha}} + \lambda_{\text{ctc}}\mathcal{L}_{\text{ctc}} + \lambda_{\text{qua}}\mathcal{L}_{\text{qua}} + \lambda_{\text{sync}}\mathcal{L}_{\text{sync}}$ 

| Model                  | Quantity regularization | CTC-ST       | WER [%] |
|------------------------|-------------------------|--------------|---------|
| LC-BLSTM-40+40 - MoChA | $\checkmark$            | -            | 12.3    |
| (from scratch)         | -                       | $\checkmark$ | 10.9    |
|                        | -                       | -            | 16.9    |
| LC-BLSTM-40+40 - MoChA | $\checkmark$            | -            | 11.3    |
| (from BLSTM - MoChA)   | -                       | $\checkmark$ | 9.9     |
|                        | $\checkmark$            | $\checkmark$ | 10.1    |

- Seeding by BLSTM- MoChA was effective
- Combination of CTC-ST and quantity regularization was not effective
   CTC-ST has a similar effect to improve the scale of α<sub>ij</sub>
- Curriculum learning was effective

➢Quantity regularization (stage-1)-> CTC-ST (stage-2)

# Results with SpecAugment F

Maximum frequency mask size

Maximum time mask size

T

|           | Model                                            | F  | T   | WER [%] |
|-----------|--------------------------------------------------|----|-----|---------|
|           | Transformer [Karita+ 2019]                       | 30 | 40  | 8.1     |
| Offling   | BLSTM - Global attention [Zeyer+ 2019]           |    | N/A | 8.8     |
| Omme      | PLSTM Clobal attention                           | -  | -   | 9.5     |
|           | BESTIM - Global attention                        |    | 100 | 8.1     |
|           | LC-BLSTM-40-+40 - MoChA<br>(seed: BLSTM - MoChA) | -  | -   | 11.3    |
|           |                                                  | 27 | 100 | 12.8    |
|           |                                                  | 27 | 50  | 11.0    |
| Strooming |                                                  | 13 | 50  | 11.2    |
| Streaming | + CTC-ST                                         | -  | -   | 9.9     |
|           |                                                  | 27 | 100 | 9.0     |
|           |                                                  | 27 | 50  | 8.6 🗳   |
|           |                                                  | 13 | 50  | 9.0     |

- MoChA did not benefit from SpecAugment w/o CTC-ST
- CTC-ST was robust to the input mask size
- Achieved the comparable performance to the offline model (8.1 vs. 8.6)
### WER vs. input sequence length



• CTC-ST improved WER for long-form utterances

# Results on Librispeech (960h)

|                | Model                               |            | R [%]      |                |
|----------------|-------------------------------------|------------|------------|----------------|
|                | IVIOUEI                             | Test-clean | Test-other |                |
|                | BLSTM - global attention            | 3.1        | 9.5        |                |
| Offling        | + SpecAugment ( $F = 27, T = 100$ ) | 2.8        | 7.6        |                |
| Omme           | BLSTM - MoChA                       | 3.6        | 10.5       |                |
|                | + Quantity regularization (T2)      | 3.3        | 10.0 🗲     | 8.3/4.7%(      |
|                | UniLSTM - MoChA                     | 5.3        | 14.5       |                |
|                | + CTC-ST                            | 4.7        | 13.6 🗲     | 11.3/6.2% ( 1) |
| Initialization | + SpecAugment                       | 4.2        | 11.2       |                |
|                | LC-BLSTM-40+40 - MoChA              | 4.1        | 11.2       |                |
|                | + SpecAugment ( $F = 13, T = 50$ )  | 4.0        | 9.5        |                |
| Streaming      | + SpecAugment ( $F = 27, T = 50$ )  | 4.8        | 9.3        |                |
|                | + SpecAugment ( $F = 27, T = 100$ ) | 5.0        | 9.7        |                |
|                | + CTC-ST                            | 3.9        | 11.2       |                |
|                | + SpecAugment ( $F = 13, T = 50$ )  | 3.6        | 9.4        | 10.2/18.7% ( 🕇 |
|                | + SpecAugment ( $F = 27, T = 50$ )  | 3.5        | 9.1 🗲      |                |
|                | + SpecAugment ( $F = 27, T = 100$ ) | 3.6        | 9.2        |                |

# Comparison with previous works on Librispeech

| Modal                                                     | WER [%]    |            |  |
|-----------------------------------------------------------|------------|------------|--|
| Ινισαει                                                   | Test-clean | Test-other |  |
| LSTM - MoChA + MWER [Kim+ 2019]                           | 5.6        | 15.6       |  |
| LSTM - MoChA + {BPE, char}-CTC + SpecAugment [Garg+ 2019] | 4.4        | 15.2       |  |
| LSTM - MoChA + CTC-ST + SpecAugment (ours)                | 4.2        | 11.2       |  |
| LC-BLSTM - sMoChA [Miao+ 2019]                            | 6.0        | 16.7       |  |
| LC-BLSTM - MTA [Miao+ 2020]                               | 4.2        | 12.3       |  |
| LC-BLSTM - MoChA + CTC-ST (ours)                          | 3.9        | 11.2       |  |
| + SpecAugment                                             | 3.5        | 9.1        |  |

### Hybrid ASR alignment vs. CTC alignment (TEDLIUM2)

+ SpecAugment is used

| Alianmont  | Madal                            |               | Corpus-level latency [ms] ( $\downarrow$ ) |        |  |
|------------|----------------------------------|---------------|--------------------------------------------|--------|--|
| Alignment  | WOUEI                            | VVER [70] (↓) | TEL@50                                     | TEL@90 |  |
| -          | UniLSTM MoChA                    | 15.0          | 280                                        | 680    |  |
| СТС        | + CTC-ST                         | 13.2          | 160                                        | 360    |  |
| CIC        | + CTC-ST +                       | 11.6          | 200                                        | 360    |  |
| Hybrid ASR | + DeCoT ( $\delta=12$ , 480ms) † | 11.2          | 200                                        | 320    |  |
|            | + DeCoT ( $\delta=16$ , 640ms) † | 11.0          | 280                                        | 440    |  |
|            | + DeCoT ( $\delta=20$ , 800ms) † | 11.3          | 240                                        | 400    |  |
|            | + DeCoT ( $\delta=24$ , 960ms) † | 11.7          | 280                                        | 480    |  |
|            | + MinLT +                        | 11.7          | 240                                        | 360    |  |

- CTC-ST not only improves WER but also reduces token emission latency
- CTC-ST is as good as DeCoT/MinLT for latency reduction w/o external alignment

### Hybrid ASR alignment vs. CTC alignment (Librispeech)

+ SpecAugment is used

| Alianmont  | Model                             | WER        | [%] (↓)    | Corpus-level latency [ms] ( $\downarrow$ ) |        |  |
|------------|-----------------------------------|------------|------------|--------------------------------------------|--------|--|
| Alignment  | Model                             | test-clean | test-other | TEL@50                                     | TEL@90 |  |
| -          | UniLSTM MoChA                     | 5.3        | 14.5       | 360                                        | 560    |  |
| СТС        | + CTC-ST                          | 4.7        | 13.6       | 240                                        | 400    |  |
|            | + CTC-ST +                        | 4.2        | 11.2       | 280                                        | 400    |  |
| Hybrid ASR | + DeCoT ( $\delta$ = 16, 640ms) † | 4.3        | 11.5       | 320                                        | 440    |  |
|            | + MinLT +                         | 4.7        | 11.8       | 320                                        | 480    |  |

• When training data is large, CTC alignment is very accurate and reliable

Non-autoregressive End-to-end Speech Translation

# Background: End-to-end speech translation (E2E-ST)

#### Pros.

- Simplified architecture
- Avoid error propagation from ASR module
- Low-latency inference
- Endangered language documentation

### Cons.

• Lack of supervised training data

Source speech

- Most previous works focused on improving translation quality
- E2E-ST is conceptually suitable for fast decoding than cascaded systems
   However, such evaluation has not been investigated so far



### Low-latency E2E-ST



# Autoregressive (AR) sequence generation

Notation

- $X = (x_1, \dots, x_U)$  (input speech)
- $Y = (y_1, ..., y_N)$  (target translation)
- $Y^{\text{src}} = (y_1^{\text{src}}, \dots, y_{N_{\text{src}}}^{\text{src}})$  (source transcription)

English speech

Danke (German)

Thank you (English)

### Autoregressive decoder

Decompose a probability distribution of Y given X into a chain of conditional probabilities from left to right

$$P(Y|X) = \prod_{i=1}^{N} P_{\operatorname{ar}}(y_i|y_{< i}, X)$$

>Optimized with cross-entropy loss  $\mathcal{L}_{ar} = -\log P_{ar}(Y|X)$ >Finish decoding after generating <eos>

## Non-autoregressive (NAR) sequence generation

### Motivation

- AR left-to-right decoding still suffers from slow inference
- Incremental decoding does not enjoy the computational power of GPU/TPU
  - > Toward parallel sequence generation
- ◆ Non-autoregressive decoder [Gu+ 2018]

➢Assume conditional independence among output tokens

$$P(Y|X) = \prod_{i=1}^{N} P_{\text{nar}}(y_i|X)$$

➢ Predict target length in advance

e.g., Fertility model, linear classifier etc.

# Modeling choice of NAR decoding

#### Single forward pass model (faster but less accurate)

#### Naïve model

- NAT [Gu+ 2018]
- NAT-REG [Wang+ 2019]
- bag-of-ngram loss [Shao+ 2020]

#### Latent variable model

- FlowSeq [Ma+ 2019]
- Delta posterior [Shu+ 2020]

#### Alignment model

- CTC [Libovický+ 2018]
- CRF [Sun+ 2019]

#### Iterative refinement model (more accurate at the cost of speed)

#### Insertion-based model

- Levenshtein Transformer [Gu+ 2019]
- Insertion-deletion Transformer [Ruis+ 2019]
- KERMIT [Chan+ 2019]
- InDIGO [Gu+ 2019]

#### Energy-based model

• ENGINE [Tu+ 2020]

#### Mask-based model

- Conditional masked language model (CMLM) [Ghazvininejad+ 2019]
- Semi-autoregressive training (SMART) [Ghazvininejad+ 2020]
- Aligned XE [Ghazvininejad+ 2020]
- Disentangled Context Transformer [Kasai+ 2020]
- Imputer [Saharia+ 2020]

# Modeling choice in E2E-ST

- Single-pass model requires a copy of encoder output to initialize decoder input
   Non-silence speech frames are NOT uniformly distributed over input speech
   Using intermediate prediction from ASR sub-module (e.g., CTC) contradicts the motivation to alleviate error propagation by E2E modeling
- Iterative refinement model can flexibly trade quality and latency during inference by changing the number of iterations
- Want to keep trainability with auxiliary tasks (ASR/MT)
   Encoder-decoder architecture

We focus on conditional masked language model (CMLM) [Ghazvininejad+ 2019]

- ✓ Easy implementation
- ✓ Good translation performance

# Proposed framework: Orthros

Challenge: target length prediction from speech

- Flexible sequence length: pause, speaking rate, language etc.
- $|X| \gg |Y|$  even after downsampling
- Rescoring multiple candidates from NAR model with separate AR model?
- Extra computation for speech encoding by AR model is not negligible



- ➢AR and NAR decoders on the shared speech encoder
- >Unified architecture, trainable in an end-to-end fashion
- Select the most probable candidate from NAR decoder by scores from AR decoder (AR decoder can generate scores in parallel)

Candidate

selection

AR decoder

NAR decoder

Encoder

 $\sim h \sim$ 

### System overview: Orthros

Candidate selection



# CMLM: inference

#### ◆ Mask-predict algorithm [Ghazvininejad+ 2019]

- Alternate two operations (mask, predict) for a constant number of iterations T
- $\hat{Y}_{\text{mask}}^{(t)} \subset Y^{(t-1)}$  (masked tokens at *t*-th iteration,  $1 \le t \le T$ )
- $\hat{Y}_{obs}^{(t)} = Y^{(t-1)} \setminus \hat{Y}_{mask}^{(t)}$  (observed tokens at *t*-th iteration)
- Initialize  $\hat{Y}^{(0)}_{\mathrm{obs}}$  with [MASK]
- 1. Mask operation

Predicted target length

- Mask out  $k_t$  tokens having the lowest confidence scores ( $k_t = \left| \widehat{N} \cdot \frac{T-t}{t} \right|$ )
- 2. Predict operation
  - Take the most probable token at every masked position *i* and update  $y_i^{(t)} \leftarrow y_i^{(t-1)}$

$$y_i^{(t)} = \underset{w_i \in V}{\operatorname{argmax}} P_{\operatorname{cmlm}}(w_i | \hat{Y}_{obs}^{(t)}, X)$$
$$p_i^{(t)} \leftarrow P_{\operatorname{cmlm}}(y_i^{(t)} | \hat{Y}_{obs}^{(t)}, X)$$

## CMLM: inference

### Target length prediction

• Take top-l sequence lengths from length distribution  $P_{lp}$ 

### Length parallel decoding

- Predict multiple l sequences having different lengths in parallel
  - $\geq$  In actual implementation, perform batch-decoding, i.e., input/output tensor size:  $[l, \hat{N}_{max}]$
- Select the most probable sequence at the last iteration among l candidates

$$score = \frac{1}{\widehat{N}} \sum_{i=1}^{\widehat{N}} \log P_{i,\text{cmlm}}^{(T)}$$

# CMLM: training

### Notation

- $Y_{\text{mask}} \subset Y$  (masked tokens in ground-truth Y)
- $Y_{obs} \subset Y \setminus Y_{mask}$  (observed tokens in Y)

### Training objective

• The number of masked tokens is sampled from uniform distribution  $\mathcal{U}(1,N)$ 

$$\mathcal{L}_{\mathrm{cmlm}} = -\sum_{y \in Y_{\mathrm{mas}k}} \log P_{\mathrm{cmlm}}(y|Y_{\mathrm{obs}}, X)$$

# Semi-autoregressive training (SMART) [Ghazvininejad+ 2020]

• Bridge the gap between training and test conditions by feeding output from the model to the CMLM decoder

#### Procedure

- 1. Obtain prediction at all positions ( $\hat{Y}$ ) from the current model by feeding  $Y_{obs}$
- 2. Obtain new decoder input  $\,\widehat{Y}_{{f obs}}$  by applying random mask to  $\widehat{Y}$
- 3. Train model to predict Y given  $\hat{Y}_{obs}$

Unlike original CMLM, cross-entropy loss is calculated at all position regardless of mask

No gradient flow  $\hat{Y}$  Mask  $\hat{Y'} \longleftrightarrow Y$ CMLM decoder CMLM decoder  $Y \xrightarrow{Mask} Y_{obs}$   $\hat{Y}_{obs}$ 

Training objective

$$\mathcal{L}_{\text{cmlm}} = -\sum_{y \in \widehat{\mathbf{Y}}} \log P_{\text{cmlm}}(y | \widehat{Y}_{\text{obs}}, X)$$

CE loss

# Orthros: training

### Training objective

$$\mathcal{L}_{\text{total}} = (1 - \lambda_{\text{cmlm}})\mathcal{L}_{\text{cmlm}}(Y|X) + \lambda_{\text{ar}}\mathcal{L}_{\text{ar}}(Y|X)$$

NAR decoder

AR decoder

$$+\lambda_{\rm lp} \mathcal{L}_{\rm lp}(N|X) + \lambda_{\rm asr} \mathcal{L}_{\rm asr}(Y^{\rm src}|X)$$
Length ASR

prediction

- Length prediction:  $\mathcal{L}_{lp}(N|X) = -\log P_{lp}(N|X)$
- ASR (CTC):  $\mathcal{L}_{asr}(Y^{src}|X) = -\log P_{ctc}(Y^{src}|X)$

# Orthros: inference

- 1. Mask-predict for T iterations
- 2. Candidate selection with AR decoder
  - After the last iteration, feed outputs from the NAR decoder to the AR decoder in parallel
  - Obtain sequence-level scores from the AR decoder
  - Pick up the most probable candidate among *l* candidates

$$score = \frac{1}{\widehat{N}} \sum_{i=1}^{\widehat{N}} \log P_{i,ar}$$

# Experimental setting

Datasets

- Must-C En-De (229k pairs, 408h), En-Fr (275k pairs, 492h)
- Fisher-CallHome Spanish (Es->En, 138k pairs, 170h)
- Libri-trans (En->Fr, 45k pairs, 100h)
- Model configuration
  - Implemented with ESPnet-ST [Inaguma+ 2020]



- Transformer base/large ( $d_{\rm model} = 256/512$ ,  $d_{\rm ff} = 2048$ , H = 4/8)
- 2-layers CNN->12-layers encoder, 6-layers decoder
- Sequence-level knowledge distillation (Seq-KD) [Kim+ 2016] from text-based AR MT model
- Vocabulary size
  - ➤ AR: BPE8k (Must-C), 1k (Fisher-CallHome, Libri-trans)
  - ≻NAR: BPE8k

# Evaluation metric

### Translation quality

• 4-gram BLEU

◆Inference speed

- GPU decoding with a NVIDIA TITAN RTX
- Decoding configuration
  - ✓ AR: beam width  $b \in \{1,4\}$
  - ✓ NAR: iteration  $T \in \{4,10\}$ , length beam width l = 9
  - ✓ Batch size: 1
- Averaged over 5 runs

## Main results: Must-C En-De/En-Fr

| Madal              |                                             | En-De |              |         | En-Fr |
|--------------------|---------------------------------------------|-------|--------------|---------|-------|
|                    | IVIOUEI                                     | BLEU  | Latency [ms] | Speedup | BLEU  |
|                    | Transformer ( <i>b</i> =1)                  | 21.54 | 175ms        | 1.54×   | 32.26 |
| Autoregressive     | Transformer ( <i>b</i> =4)                  | 23.12 | 271ms        | 1.00×   | 33.84 |
|                    | Transformer + Seq-KD ( $b=1$ )              | 23.88 | -            | -       | 33.92 |
|                    | Transformer + Seq-KD ( $b$ =4)              | 24.43 | -            | -       | 34.57 |
|                    | CTC ( <i>b</i> =1)                          | 19.40 | 13ms         | 20.84×  | 27.38 |
|                    | Orthros (CMLM, T=4)                         | 18.78 | -            | -       | 25.99 |
|                    | Orthros (CMLM, <i>T</i> =10+AR decoder)     | 19.62 | -            | -       | 27.77 |
|                    | Orthros (CMLM $T=10$ )                      | 20.89 | -            | -       | 28.74 |
|                    | Orthros (CMLM, <i>T</i> =10+AR decoder)     | 21.79 | -            | -       | 30.31 |
| Non-autoregressive | Orthros (SMART, $T=4$ )                     | 20.03 | 46           | 5.89×   | 27.22 |
|                    | Orthros (SMART, <i>T</i> =10+AR decoder)    | 21.08 | 61           | 4.44×   | 29.30 |
|                    | Orthros (SMART, <i>T</i> =10)               | 21.25 | 99           | 2.73×   | 29.31 |
|                    | Orthros (SMART, <i>T</i> =10+AR decoder)    | 22.27 | 117          | 2.44×   | 31.07 |
|                    | + BPE8k -> BPE16k                           | 22.88 | 117          | 2.31×   | 32.20 |
|                    | + large (SMART, $T$ =4+AR decoder, $l$ =7)  | 22.54 | 59           | 4.59×   | 31.24 |
|                    | + large (SMART, $T$ =10+AR decoder, $l$ =7) | 23.92 | 113          | 2.39×   | 33.05 |

Semi-autoregressive training (SMART)

n-De/En-Fr

| Improved BLEU significantly with no extra |                                             |       |              |         |       |
|-------------------------------------------|---------------------------------------------|-------|--------------|---------|-------|
| latency during                            | inference                                   |       | En-De        |         | En-Fr |
|                                           |                                             | BLEU  | Latency [ms] | Speedup | BLEU  |
|                                           | Transformer ( <i>b</i> =1)                  | 21.54 | 175ms        | 1.54×   | 32.26 |
| Autorogracciva                            | Transformer ( <i>b</i> =4)                  | 23.12 | 271ms        | 1.00×   | 33.84 |
| Autoregressive                            | Transformer + Seq-KD ( $b=1$ )              | 23.88 | -            | -       | 33.92 |
|                                           | Transformer + Seq-KD ( $b=4$ )              | 24.43 | -            | -       | 34.57 |
|                                           | CTC ( <i>b</i> =1)                          | 19.40 | 13ms         | 20.84×  | 27.38 |
|                                           | Orthros (CMLM, <i>T</i> =4)                 | 18.78 | -            | -       | 25.99 |
|                                           | Orthros (CMLM, <i>T</i> =10+AR decoder)     | 19.62 | -            | -       | 27.77 |
|                                           | Orthros (CMLM $T=10$ )                      | 20.89 | -            | -       | 28.74 |
|                                           | Orthros (CMLM, <i>T</i> =10+AR decoder)     | 21.79 | -            | -       | 30.31 |
| Non-autoregressive                        | Orthros (SMART, $T=4$ )                     | 20.03 | 46           | 5.89×   | 27.22 |
|                                           | Orthros (SMART, <i>T</i> =10+AR decoder)    | 21.08 | 61           | 4.44×   | 29.30 |
|                                           | Orthros (SMART, <i>T</i> =10)               | 21.25 | 99           | 2.73×   | 29.31 |
|                                           | Orthros (SMART, <i>T</i> =10+AR decoder)    | 22.27 | 117          | 2.44×   | 31.07 |
|                                           | + BPE8k -> BPE16k                           | 22.88 | 117          | 2.31×   | 32.20 |
|                                           | + large (SMART, $T$ =4+AR decoder, $l$ =7)  | 22.54 | 59           | 4.59×   | 31.24 |
|                                           | + large (SMART, $T$ =10+AR decoder, $l$ =7) | 23.92 | 113          | 2.39×   | 33.05 |

| Candidates select <ul> <li>Improved BLE</li> </ul>                                              | ר-F                                         | r     |              |         |       |
|-------------------------------------------------------------------------------------------------|---------------------------------------------|-------|--------------|---------|-------|
| This correspon                                                                                  | ids to performing one more iteration (at    | out   | En-De        |         | En-Fr |
| +15ms)                                                                                          |                                             | EU    | Latency [ms] | Speedup | BLEU  |
| <ul> <li>CMLM does not have the ability to generate useful<br/>sentence-level scores</li> </ul> |                                             | .54   | 175ms        | 1.54×   | 32.26 |
|                                                                                                 |                                             | .12   | 271ms        | 1.00×   | 33.84 |
| Autoregressive                                                                                  | Transformer + Seq-KD ( $b=1$ )              | 23.88 | -            | -       | 33.92 |
|                                                                                                 | Transformer + Seq-KD ( $b=4$ )              | 24.43 | -            | -       | 34.57 |
|                                                                                                 | CTC ( <i>b</i> =1)                          | 19.40 | 13ms         | 20.84×  | 27.38 |
|                                                                                                 | Orthros (CMLM, T=4)                         | 18.78 | -            | -       | 25.99 |
|                                                                                                 | Orthros (CMLM, <i>T</i> =10+AR decoder)     | 19.62 | -            | -       | 27.77 |
|                                                                                                 | Orthros (CMLM <i>T</i> =10)                 | 20.89 | -            | -       | 28.74 |
|                                                                                                 | Orthros (CMLM, <i>T</i> =10+AR decoder)     | 21.79 | -            | -       | 30.31 |
| Non-autoregressive                                                                              | Orthros (SMART, <i>T</i> =4)                | 20.03 | 46           | 5.89×   | 27.22 |
|                                                                                                 | Orthros (SMART, <i>T</i> =10+AR decoder)    | 21.08 | 61           | 4.44×   | 29.30 |
|                                                                                                 | Orthros (SMART, <i>T</i> =10)               | 21.25 | 99           | 2.73×   | 29.31 |
|                                                                                                 | Orthros (SMART, <i>T</i> =10+AR decoder)    | 22.27 | 117          | 2.44×   | 31.07 |
|                                                                                                 | + BPE8k -> BPE16k                           | 22.88 | 117          | 2.31×   | 32.20 |
|                                                                                                 | + large (SMART, $T$ =4+AR decoder, $l$ =7)  | 22.54 | 59           | 4.59×   | 31.24 |
|                                                                                                 | + large (SMART, $T$ =10+AR decoder, $l$ =7) | 23.92 | 113          | 2.39×   | 33.05 |

Vocabulary sizeLarge BPE vocabulary improved BLEU scores

# -De/En-Fr

| • This was not tr  | ue for AR models (shown in                  |       | En-De        |         | En-Fr |
|--------------------|---------------------------------------------|-------|--------------|---------|-------|
| the later slide)   |                                             | BLEU  | Latency [ms] | Speedup | BLEU  |
|                    | Transformer ( <i>b</i> =1)                  | 21.54 | 175ms        | 1.54×   | 32.26 |
| Autorogracciva     | Transformer ( <i>b</i> =4)                  | 23.12 | 271ms        | 1.00×   | 33.84 |
| Autoregressive     | Transformer + Seq-KD ( $b=1$ )              | 23.88 | -            | -       | 33.92 |
|                    | Transformer + Seq-KD ( $b=4$ )              | 24.43 | -            | -       | 34.57 |
|                    | CTC ( <i>b</i> =1)                          | 19.40 | 13ms         | 20.84×  | 27.38 |
|                    | Orthros (CMLM, <i>T</i> =4)                 | 18.78 | -            | -       | 25.99 |
|                    | Orthros (CMLM, <i>T</i> =10+AR decoder)     | 19.62 | -            | -       | 27.77 |
|                    | Orthros (CMLM $T=10$ )                      | 20.89 | -            | -       | 28.74 |
|                    | Orthros (CMLM, <i>T</i> =10+AR decoder)     | 21.79 | -            | -       | 30.31 |
| Non-autoregressive | Orthros (SMART, $T=4$ )                     | 20.03 | 46           | 5.89×   | 27.22 |
|                    | Orthros (SMART, <i>T</i> =10+AR decoder)    | 21.08 | 61           | 4.44×   | 29.30 |
|                    | Orthros (SMART, <i>T</i> =10)               | 21.25 | 99           | 2.73×   | 29.31 |
| [                  | Orthros (SMART, <i>T</i> =10+AR decoder)    | 22.27 | 117          | 2.44×   | 31.07 |
|                    | + BPE8k -> BPE16k                           | 22.88 | 117          | 2.31×   | 32.20 |
| -                  | + large (SMART, $T$ =4+AR decoder, $l$ =7)  | 22.54 | 59           | 4.59×   | 31.24 |
|                    | + large (SMART, $T$ =10+AR decoder, $l$ =7) | 23.92 | 113          | 2.39×   | 33.05 |

Large model

- Increasing model capacity was very important for
- This was not t the later slide

-De/En-Fr

| important for NAR models |                                             |       | En-De        |         | En-Fr |
|--------------------------|---------------------------------------------|-------|--------------|---------|-------|
| This was not tr          | ue for AR models (shown in                  | BLEU  | Latency [ms] | Speedup | BLEU  |
| the later slide)         |                                             | 21.54 | 175ms        | 1.54×   | 32.26 |
| Autorogrossivo           |                                             | 23.12 | 271ms        | 1.00×   | 33.84 |
| Autoregressive           | Transformer + Seq-KD ( $b=1$ )              | 23.88 | -            | -       | 33.92 |
|                          | Transformer + Seq-KD ( $b$ =4)              | 24.43 | -            | -       | 34.57 |
|                          | CTC ( <i>b</i> =1)                          | 19.40 | 13ms         | 20.84×  | 27.38 |
|                          | Orthros (CMLM, <i>T</i> =4)                 | 18.78 | -            | -       | 25.99 |
|                          | Orthros (CMLM, <i>T</i> =10+AR decoder)     | 19.62 | -            | -       | 27.77 |
|                          | Orthros (CMLM $T=10$ )                      | 20.89 | -            | -       | 28.74 |
|                          | Orthros (CMLM, <i>T</i> =10+AR decoder)     | 21.79 | -            | -       | 30.31 |
| Non-autoregressive       | Orthros (SMART, <i>T</i> =4)                | 20.03 | 46           | 5.89×   | 27.22 |
|                          | Orthros (SMART, <i>T</i> =10+AR decoder)    | 21.08 | 61           | 4.44×   | 29.30 |
|                          | Orthros (SMART, <i>T</i> =10)               | 21.25 | 99           | 2.73×   | 29.31 |
|                          | Orthros (SMART, <i>T</i> =10+AR decoder)    | 22.27 | 117          | 2.44×   | 31.07 |
|                          | + BPE8k -> BPE16k                           | 22.88 | 117          | 2.31×   | 32.20 |
| [                        | + large (SMART, $T$ =4+AR decoder, $l$ =7)  | 22.54 | 59           | 4.59×   | 31.24 |
|                          | + large (SMART, $T$ =10+AR decoder, $l$ =7) | 23.92 | 113          | 2.39×   | 33.05 |

# Main results: Must-C En-De/En-Fr

| Madal                                                   |                                                       | En-De |              |         | En-Fr |
|---------------------------------------------------------|-------------------------------------------------------|-------|--------------|---------|-------|
|                                                         |                                                       | BLEU  | Latency [ms] | Speedup | BLEU  |
|                                                         | Transformer ( <i>b</i> =1)                            | 21.54 | 175ms        | 1.54×   | 32.26 |
| Autoregressive                                          | Transformer ( <i>b</i> =4)                            | 23.12 | 271ms        | 1.00×   | 33.84 |
|                                                         | Transformer + Seq-KD ( $b=1$ )                        | 23.88 | -            | -       | 33.92 |
|                                                         | Transformer + Seq-KD ( $b$ =4)                        | 24.43 | -            | -       | 34.57 |
|                                                         |                                                       | 19.40 | 13ms         | 20.84×  | 27.38 |
| V NAR VS AR                                             |                                                       | 18.78 | -            | -       | 25.99 |
| Achieved comparable BLEU scores to baseline Transformer |                                                       | 19.62 | -            | -       | 27.77 |
| <ul> <li>Sea-KD booste</li> </ul>                       | ed AR model's performance further                     | 20.89 | -            | -       | 28.74 |
| This differs fro                                        | om MT:                                                | 21.79 | -            | -       | 30.31 |
| MT: large                                               | AR teacher-> small AR student                         | 20.03 | 46           | 5.89×   | 27.22 |
| > E2E-ST: A                                             | R MT teacher -> AR E2E-ST student                     | 21.08 | 61           | 4.44×   | 29.30 |
|                                                         | Orthros (SMART, T=10)                                 | 21.25 | 99           | 2.73×   | 29.31 |
|                                                         | Orthros (SMART, <i>T</i> =10+AR decoder)              | 22.27 | 117          | 2.44×   | 31.07 |
|                                                         | + BPE8k -> BPE16k                                     | 22.88 | 117          | 2.31×   | 32.20 |
|                                                         | + large (SMART, $T$ =4+AR decoder, $l$ =7)            | 22.54 | 59           | 4.59×   | 31.24 |
|                                                         | + large (SMART, <i>T</i> =10+AR decoder, <i>l</i> =7) | 23.92 | 113          | 2.39×   | 33.05 |











69





### Results: Fisher-CallHome Spanish/Libri-trans

|                    |                                          |                 | BLEU                    |             |  |
|--------------------|------------------------------------------|-----------------|-------------------------|-------------|--|
|                    | Model                                    |                 | Fisher-CallHome Spanish |             |  |
|                    |                                          | Fisher-<br>test | CallHome-<br>evltest    | Libri-trans |  |
|                    | Transformer ( <i>b</i> =1)               | 48.38           | 18.07                   | 16.52       |  |
| Autoregressive     | Transformer ( <i>b</i> =4)               | 48.49           | 18.90                   | 16.84       |  |
| Autoregressive     | Transformer + Seq-KD ( $b=1$ )           | 50.34           | 19.09                   | 15.91       |  |
|                    | Transformer + Seq-KD ( $b$ =4)           | 50.32           | 19.81                   | 16.44       |  |
|                    | CTC ( <i>b</i> =1)                       | 45.97           | 15.91                   | 12.10       |  |
|                    | Orthros (CMLM, <i>T</i> =4)              | 46.03           | 16.71                   | 12.90       |  |
|                    | Orthros (CMLM, <i>T</i> =10+AR decoder)  | 47.80           | 18.28                   | 13.69       |  |
|                    | Orthros (CMLM $T=10$ )                   | 48.56           | 18.60                   | 14.68       |  |
| Non-autoregressive | Orthros (CMLM, <i>T</i> =10+AR decoder)  | 49.98           | 19.71                   | 15.43       |  |
|                    | Orthros (SMART, $T=4$ )                  | 45.89           | 17.39                   | 14.17       |  |
|                    | Orthros (SMART, <i>T</i> =10+AR decoder) | 48.73           | 19.25                   | 14.99       |  |
|                    | Orthros (SMART, <i>T</i> =10)            | 47.09           | 18.25                   | 15.11       |  |
|                    | Orthros (SMART, <i>T</i> =10+AR decoder) | 50.07           | 20.10                   | 16.08       |  |
|                    | + BPE8k -> BPE16k                        | 50.18           | 19.88                   | 16.22       |  |
## Ablation study on Fisher-CallHome dev set

|                            | BLEU   |       |        |       |
|----------------------------|--------|-------|--------|-------|
| Model                      | T = 4  |       | T = 10 |       |
|                            | w/o AR | w/ AR | w/o AR | w/ AR |
| Orthros BPE8k              | 45.76  | 49.01 | 46.88  | 50.28 |
| - Seq-KD                   | 44.36  | 47.42 | 44.25  | 49.50 |
| - AR decoder               | 45.53  | -     | 46.94  | -     |
| + length prediction w/ CTC | 45.41  | 48.18 | 46.79  | 50.05 |

- Seq-KD was beneficial (multi-modality problem was alleviated)
- Joint training with AR decoder itself had no impact on BLEU scores
- Linear classifier-based length prediction was better than the CTC-based one  $\succ$ CTC-based length prediction:  $[\widehat{N} - |\frac{l}{2}|, \widehat{N} + |\frac{l}{2}|]$ , where  $\widehat{N} = \lfloor \alpha \widehat{N}_{src} \rfloor$ ( $\alpha$ : hyperparameter,  $\widehat{N}_{src}$ : ASR hypothesis length obtained by CTC greedy decoding)

## Effect of vocabulary size on Fisher-CallHome dev set



- AR models have a peak around BPE1k (due to data sparseness, 170h)
- Candidate selection with AR decoder is always effective regardless of BPE size
- Orthros + candidate selection continued to improve until BPE16k
  Most tokens in vocabulary are "complete" word
  Complementary effect on the conditional independence assumption

## Conclusion and future work

- Perceived latency reduction for streaming encoder-decoder ASR
  - Alignment information is effective on the decoder side
  - CTC alignment is as good as alignment from hybrid ASR system
- Fast non-autoregressive decoding for E2E-ST, Orthros

➢AR decoder + NAR decoder on shared speech encoder

- Candidate selection with AR decoder was very effective to estimate target lengths
- Reached comparable translation quality to SOTA AR E2E-ST models with more than 2× latency reduction